日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          如圖,拋物線y=ax2-4ax+c交x軸于A、B兩點,交y軸于C點,點D(4,-3)在拋物精英家教網線上,且四邊形ABDC的面積為18.
          (1)求拋物線的函數關系式;
          (2)若正比例函數y=kx的圖象將四邊形ABDC的面積分為1:2的兩部分,求k的值;
          (3)將△AOC沿x軸翻折得到△AOC′,問:是否存在這樣的點P,以P為位似中心,將△AOC′放大為原來的兩倍后得到△EPG(即△EPG∽△AOC′,且相似比為2),使得點E、G恰好在拋物線上?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
          分析:(1)由拋物線解析式可知拋物線對稱軸為x=2,根據對稱性可求C點坐標,則四邊形ABDC為等腰梯形,CD=4,OC=3,由已知四邊形面積可求AB=8,根據等腰梯形的性質可求A點坐標,將A、C兩點坐標代入拋物線解析式即可;
          (2)由(1)可知S四邊形ABDC=18,S△OBD=9,則S△OBD=
          1
          2
          S四邊形ABDC,分①直線y=kx與邊BD相交,②直線y=kx與邊CD相交,兩種情況求k的值;
          (3)存在.翻折后點C′(0,3),由圖形的位似及相似比為2,按照①同向放大,②反向放大,兩種情況,根據C′為PG的中點,由相似比求P、E、G的坐標.
          解答:解:(1)∵y=ax2-4ax+c=a(x-2)2-4a+c,
          ∴拋物線的對稱軸為直線x=2.(1分)
          ∵點D(4,-3)在拋物線上,∴由對稱性知C(0,-3).(2分)
          ∴四邊形ABCD為梯形.
          由四邊形ABDC的面積為18、CD=4,OC=3得AB=8,∴A(-2,0).(3分)
          由A(-2,0)、C(0,-3)得y=
          1
          4
          x2-x-3.(4分)

          (2)∵S四邊形ABDC=18,S△OBD=9,
          ∴S△OBD=
          1
          2
          S四邊形ABDC
          ∴只可能出現兩種情形:
          ①直線y=kx與邊BD相交于點E,且S△OBE=
          1
          3
          S四邊形ABDC=
          1
          3
          ×18=6;
          ∵OB=6,
          ∴點E到OB的距離為2,
          直線BD的解析式為y=
          3
          2
          x-9,
          令y=-2,則x=
          14
          3

          ∴E點坐標為(
          14
          3
          ,-2)
          把E(
          14
          3
          ,-2)代入y=kx得k=-
          3
          7
          ;
          ②直線y=kx與邊CD相交于點F,且S四邊形OBDF=
          2
          3
          S四邊形ABDC=
          2
          3
          ×18=12(5分);精英家教網
          ∵OB=6,
          ∴DF=2,
          ∴F點坐標為(2,-3),
          把F(2,-3)代入y=kx得k=-
          3
          2

          (3)翻折后點C′(0,3),由圖形的位似及相似比為2,可得:
          ∵根據位似得平行k相等設解析式,
          直線AC′的解析式為:y=kx+b,
          -2k+b=0
          b=3

          解得:
          k=1.5
          b=3
          ,
          ∴y=1.5x+3,
          ∴直線EG的解析式為:y=1.5x+c,
          ∴兩函數交點坐標為:
          y=
          1
          4
          x2-x-3
          y=1.5x+c
          ,
          ∴整理可得出:x2-10x-12-4c=0,
          ∴x1+x2=10,
          ∵圖形的位似及相似比為2,
          ∴EN=2AO=4,GN=2C′O=6,
          ∴x2-x1=4,
          解得:x2=7,x1=3,
          ∴E點橫坐標為:3,進而得出縱坐標為:-
          15
          4

          或E點橫坐標為:7,進而得出縱坐標為:
          9
          4
          ,
          即可得出:
          ①若為同向放大,則E(3,-
          15
          4
          )、G(7,
          9
          4
          );(8分)
          ②若為反向放大,則E(7,
          9
          4
          )、G(3,-
          15
          4
          ).(9分)
          若為情形①,則P(-7,
          15
          4
          );(10分)
          若為情形②,
          則P(1,
          3
          4
          ).(11分)
          點評:本題考查了二次函數的綜合運用.關鍵是根據拋物線的對稱性,判斷四邊形ABDC為等腰梯形,求頂點坐標,確定拋物線解析式,再根據面積關系確定P點坐標.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是(  )

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖,拋物線y1=-ax2-ax+1經過點P(-
          1
          2
          ,
          9
          8
          ),且與拋物線y2=ax2-ax-1相交于A,B兩點.
          (1)求a值;
          (2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(點E在點F的左邊),觀察M,N,E,F四點的坐標,寫出一條正確的結論,并通過計算說明;
          (3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網O為坐標原點,拋物線上一點C的橫坐標為1.
          (1)求A,B兩點的坐標;
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網此拋物線上,矩形面積為12,
          (1)求該拋物線的對稱軸;
          (2)⊙P是經過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
          (3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網與x軸交于點A、B,點A的坐標為(-2,0).
          (1)求該拋物線的解析式;
          (2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
          (3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案