日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某周日上午8:00小宇從家出發(fā),乘車(chē)1小時(shí)到達(dá)某活動(dòng)中心參加實(shí)踐活動(dòng).11:00時(shí)他在活動(dòng)中心接到爸爸的電話(huà),因急事要求他在12:00前回到家,他即刻按照來(lái)活動(dòng)中心時(shí)的路線(xiàn),以5千米/小時(shí)的平均速度快步返回.同時(shí),爸爸從家沿同一路線(xiàn)開(kāi)車(chē)接他,在距家20千米處接上了小宇,立即保持原來(lái)的車(chē)速原路返回.設(shè)小宇離家x(小時(shí))后,到達(dá)離家y(千米)的地方,圖中折線(xiàn)OABCD表示y與x之間的函數(shù)關(guān)系.
          (1)活動(dòng)中心與小宇家相距千米,小宇在活動(dòng)中心活動(dòng)時(shí)間為小時(shí),他從活動(dòng)中心返家時(shí),步行用了小時(shí);
          (2)求線(xiàn)段BC所表示的y(千米)與x(小時(shí))之間的函數(shù)關(guān)系式(不必寫(xiě)出x所表示的范圍);
          (3)根據(jù)上述情況(不考慮其他因素),請(qǐng)判斷小宇是否能在12:00前回到家,并說(shuō)明理由.

          【答案】
          (1)22;2;0.4
          (2)解:根據(jù)題意得:y=22﹣5(x﹣3)=﹣5x+37
          (3)解:小宇從活動(dòng)中心返家所用時(shí)間為:0.4+0.4=0.8(小時(shí)),

          ∵0.8<1,

          ∴所用小宇12:00前能到家


          【解析】解:(1)∵點(diǎn)A的坐標(biāo)為(1,22),點(diǎn)B的坐標(biāo)為(3,22), ∴活動(dòng)中心與小宇家相距22千米,小宇在活動(dòng)中心活動(dòng)時(shí)間為3﹣1=2小時(shí).
          (22﹣20)÷5=0.4(小時(shí)).
          所以答案是:22;2;0.4.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應(yīng)增加的條件不能是(

          A.AD=BC
          B.OA=OC
          C.AB=CD
          D.∠ABC+∠BCD=180°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對(duì)角線(xiàn)BD對(duì)折,點(diǎn)C落在點(diǎn)C′的位置,BC′交AD于點(diǎn)G.
          (1)求證:AG=C′G;
          (2)如圖2,再折疊一次,使點(diǎn)D與點(diǎn)A重合,得折痕EN,EN交AD于點(diǎn)M,求EM的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】先化簡(jiǎn),再求值: ,其中 是不等式組 的整數(shù)解

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在邊長(zhǎng)為6cm的正方形ABCD中,點(diǎn)E、F、G、H分別從點(diǎn)A、B、C、D同時(shí)出發(fā),均以1cm/s的速度向點(diǎn)B、C、D、A勻速運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),四個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,當(dāng)運(yùn)動(dòng)時(shí)間為s時(shí),四邊形EFGH的面積最小,其最小值是cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線(xiàn)y=ax2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知A(3,0),且M(1,﹣ )是拋物線(xiàn)上另一點(diǎn).

          (1)求a、b的值;
          (2)連結(jié)AC,設(shè)點(diǎn)P是y軸上任一點(diǎn),若以P、A、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,求P點(diǎn)的坐標(biāo);
          (3)若點(diǎn)N是x軸正半軸上且在拋物線(xiàn)內(nèi)的一動(dòng)點(diǎn)(不與O、A重合),過(guò)點(diǎn)N作NH∥AC交拋物線(xiàn)的對(duì)稱(chēng)軸于H點(diǎn).設(shè)ON=t,△ONH的面積為S,求S與t之間的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E在邊AB上,且BE=1,若點(diǎn)P在對(duì)角線(xiàn)BD上移動(dòng),則PA+PE的最小值是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,PA,PB是⊙O的切線(xiàn),A,B為切點(diǎn),連接AO并延長(zhǎng),交PB的延長(zhǎng)線(xiàn)于點(diǎn)C,連接PO,交⊙O于點(diǎn)D.
          (1)求證:PO平分∠APC;
          (2)連接DB,若∠C=30°,求證:DB∥AC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】圖1、圖2為同一長(zhǎng)方體房間的示意圖,圖3為該長(zhǎng)方體的表面展開(kāi)圖.
          (1)蜘蛛在頂點(diǎn)A′處. ①蒼蠅在頂點(diǎn)B處時(shí),試在圖1中畫(huà)出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線(xiàn).
          ②蒼蠅在頂點(diǎn)C處時(shí),圖2中畫(huà)出了蜘蛛捉住蒼蠅的兩條路線(xiàn),往天花板ABCD爬行的最近路線(xiàn)A′GC和往墻面BB′C′C爬行的最近路線(xiàn)A′HC,試通過(guò)計(jì)算判斷哪條路線(xiàn)更近.
          (2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線(xiàn)段AB上,蒼蠅Q在⊙M的圓周上,線(xiàn)段PQ為蜘蛛爬行路線(xiàn),若PQ與⊙M相切,試求PQ長(zhǎng)度的范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案