日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在對稱軸上存在一點P,使得△PBC的周長最小.請求出點P的坐標(biāo);
          (3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

          【答案】分析:(1)已知拋物線過C(0,-2)點,那么c=-2;根據(jù)對稱軸為x=-1,因此-=-1,然后將A點的坐標(biāo)代入拋物線中,通過聯(lián)立方程組即可得出拋物線的解析式.
          (2)本題的關(guān)鍵是確定P點的位置,由于A是B點關(guān)于拋物線對稱軸的對稱點,因此連接AC與拋物線對稱軸的交點就是P點.可根據(jù)A,C的坐標(biāo)求出AC所在直線的解析式,然后根據(jù)得出的一次函數(shù)的解析式求出與拋物線對稱軸的交點即可得出P點的坐標(biāo).
          (3)△PDE的面積=△OAC的面積-△PDC的面積-△ODE的面積-△AEP的面積
          △OAC中,已知了A,C的坐標(biāo),可求出△OAC的面積.
          △PDC中,以CD為底邊,P的橫坐標(biāo)的絕對值為高,即可表示出△PDC的面積.
          △ODE中,可先用m表示出OD的長,然后根據(jù)△ODE與△OAC相似,求出OE的長,根據(jù)三角形的面積計算公式可用m表示出△ODE的面積.
          △PEA中,以AE為底邊(可用OE的長表示出AE),P點的縱坐標(biāo)的絕對值為高,可表示出△PEA的面積.
          由此可表示出△ODE的面積,即可得出關(guān)于S,m的函數(shù)關(guān)系式.然后根據(jù)函數(shù)的性質(zhì)求出三角形的最大面積以及對應(yīng)的m的值.
          解答:解:(1)由題意得,
          解得
          ∴此拋物線的解析式為y=x2+x-2.

          (2)連接AC、BC.

          因為BC的長度一定,
          所以△PBC周長最小,就是使PC+PB最。
          B點關(guān)于對稱軸的對稱點是A點,AC與對稱軸x=-1的交點即為所求的點P.
          設(shè)直線AC的表達(dá)式為y=kx+b,

          解得,
          ∴此直線的表達(dá)式為y=-x-2,
          把x=-1代入得y=-
          ∴P點的坐標(biāo)為(-1,-).

          (3)S存在最大值,
          理由:∵DE∥PC,即DE∥AC.
          ∴△OED∽△OAC.
          ,即,
          ∴OE=3-m,OA=3,AE=m,
          ∴S=S△OAC-S△OED-S△AEP-S△PCD
          =×3×2-×(3-m)×(2-m)-×-×m×1
          =-m2+m=-(m-1)2+

          ∴當(dāng)m=1時,S最大=
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似等重要知識點;
          (3)中無法直接求出三角形的面積時,可用其他圖形的面積經(jīng)過“和,差”的關(guān)系來求出其面積.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:拋物線y=x2-(a+b)x+
          c2
          4
          ,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個不同交點;
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為
          3
          ,拋物線與x軸交于點P、Q,問是否精英家教網(wǎng)存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
          (1)求證:拋物線與直線一定有兩個不同的交點;
          (2)設(shè)拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
          c
          a
          ,試問:是否存在實數(shù)k,使線段A1B1的長為4
          2
          .如果存在,求出k的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
          (1)頂點P的坐標(biāo)是
          (-1,4)
          (-1,4)
          ;
          (2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達(dá)式;
          (3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:拋物線數(shù)學(xué)公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個不同交點;
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學(xué)公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年四川省綿陽市南山中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

          已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個不同交點;
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案