日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19、如圖,在△ABC中,AB=AC,以AB為直徑的圓O交BC于點D,交AC于點E,過點D作DF⊥AC,垂足為F.
          (1)求證:DF為⊙O的切線;
          (2)若過A點且與BC平行的直線交BE的延長線于G點,連接CG.當△ABC是等邊三角形時,求∠AGC的度數(shù).
          分析:(1)連接AD,OD,根據(jù)等腰三角形的性質(zhì)與平行線的性質(zhì),可得DF⊥OD,故得到證明;
          (2)根據(jù)題意,△ABC是等邊三角形,可得BG是AC的垂直平分線,再根據(jù)平行線的性質(zhì),可得△ACG是等邊三角形,故∠AGC=60°.
          解答:證明:(1)連接AD,OD,
          ∵AB是⊙O的直徑,
          ∴AD⊥BC.(2分)
          ∵△ABC是等腰三角形,
          ∴BD=DC.
          ∵AO=BO,
          ∴OD∥AC.
          ∵DF⊥AC,(4分)
          ∴DF⊥OD,
          ∴DF是⊙O的切線.(5分)

          (2)∵AB是⊙O的直徑,
          ∴BG⊥AC.
          ∵△ABC是等邊三角形,
          ∴BG是AC的垂直平分線,
          ∴GA=GC.(7分)
          又∵AG∥BC,∠ACB=60°,
          ∴∠CAG=∠ACB=60°.
          ∴△ACG是等邊三角形.
          ∴∠AGC=60°.(9分)
          點評:本題考查常見的幾何題型,包括切線的判定,及角度的大小的求法,要求學(xué)生掌握常見的解題方法,并能結(jié)合圖形選擇簡單的方法解題.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學(xué) 來源: 題型:

          20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
          75
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
          (  )
          A、
          1
          2
          B、(
          2
          2
          7
          C、
          1
          4
          D、
          1
          8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
           
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
          16
          cm.

          查看答案和解析>>

          同步練習冊答案