日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知菱形ABCD的周長(zhǎng)為40cm,BD=10cm,則這個(gè)菱形的面積是
          50
          3
          cm2
          50
          3
          cm2
          分析:根據(jù)菱形的四條邊都相等求出邊長(zhǎng)AB,根據(jù)菱形的對(duì)角線互相垂直平分求出BO,AC⊥BD,再利用勾股定理列式求出AO,然后求出AC,最后根據(jù)菱形的面積等于對(duì)角線乘積的一半列式計(jì)算即可得解.
          解答:解:如圖,∵菱形ABCD的周長(zhǎng)為40cm,
          ∴AB=40÷4=10cm,
          ∵BD=10cm,
          ∴BO=
          1
          2
          BD=
          1
          2
          ×10=5cm,
          在菱形ABCD中,AC⊥BD,
          ∴AO=
          AB2-BO2
          =
          102-52
          =5
          3
          cm,
          ∴AC=2AO=10
          3
          cm,
          這個(gè)菱形的面積=
          1
          2
          AC•BD=
          1
          2
          ×10
          3
          ×10=50
          3
          cm2
          故答案為:50
          3
          cm2
          點(diǎn)評(píng):本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對(duì)角線互相垂直平分以及菱形的面積的求法,熟記性質(zhì)是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
          (1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
          (2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
          ①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
          ②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:矩形ABCD中AD>AB,O是對(duì)角線的交點(diǎn),過(guò)O任作一直線分別交BC、AD于點(diǎn)M、N(如圖①).
          (1)求證:BM=DN;
          (2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
          (3)在(2)的條件下,如圖③,若AB=4cm,BC=8cm,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AMB和△CDN各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→M→B→A停止,點(diǎn)Q自C→D→N→C停止.在運(yùn)動(dòng)過(guò)程中,已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
          (1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
          (2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
          ①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
          ②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省鹽城市阜寧縣東溝中學(xué)九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

          已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
          (1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
          (2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
          ①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
          ②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué) 題型:解答題

          (2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

          (1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);

          (2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,

          ①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

          ②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案