日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點.若PA=2,則PQ的最小值為________,理論根據(jù)為________.

          2    角平分線上的點到角兩邊的距離相等
          分析:過P作PQ⊥OM于Q,此時PQ的長最短,根據(jù)角平分線性質(zhì)得出PQ=PA=2即可.
          解答:
          過P作PQ⊥OM于Q,此時PQ的長最短,
          ∵OP平分∠MON,PA⊥ON,PA=2,
          ∴PQ=PA=2(角平分線上的點到角兩邊的距離相等),
          故答案為:2,角平分線上的點到角兩邊的距離相等.
          點評:本題考查了角平分線性質(zhì),勾股定理的應(yīng)用,注意:角平分線上的點到角兩邊的距離相等.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2013•西寧)如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點.若PA=2,則PQ的最小值為
          2
          2
          ,理論根據(jù)為
          角平分線上的點到角兩邊的距離相等
          角平分線上的點到角兩邊的距離相等

          查看答案和解析>>

          科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(青海西寧卷)數(shù)學(解析版) 題型:選擇題

          如圖,已知OP平分∠AOB,∠AOB=,CP,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是

          A.                  B.         C.         D.

           

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,已知OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點.若PA=2,則PQ的最小值為______,理論根據(jù)為______.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習冊答案