日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點(diǎn)D,連接AD并延長(zhǎng)交BC于點(diǎn)E,BC=3,CD=2
          (1)求⊙O的半徑.
          (2)取BE的中點(diǎn)F,連接DF,求證:DF是⊙O的切線.
          (3)過(guò)點(diǎn)D作DG⊥BC,垂足為G,OE與DG相交于點(diǎn)M,連接BM并延長(zhǎng),與OC相交于點(diǎn)N,試確定以N為圓心,經(jīng)過(guò)點(diǎn)E的⊙N與⊙O的位置關(guān)系(說(shuō)明理由),并求出⊙N的半徑.
          分析:(1)由AB是圓O的直徑,BC為圓O的切線,根據(jù)切線性質(zhì)得到AB與BC垂直,設(shè)圓O的半徑為r,在直角三角形OBC中,由OC=r+2,OB=r,CB=3,利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到r的值;
          (2)連接OF,由OA=OB,BF=EF,得到OF為三角形ABE的中位線,根據(jù)中位線定理得到OF與AE平行,由平行得到∠1=∠A,∠2=∠ADO,又半徑OA=OD,根據(jù)等邊對(duì)等角得到∠A=∠ADO,等量代換得到∠1=∠2,由OB=OD,且OF為公共邊,利用“SAS”的方法得到兩三角形全等,得到∠ODF=∠OBF=90°,即DF⊥OD,得證;
          (3)兩圓的位置關(guān)系是外切.理由是:連接NE,由兩直線與同一條直線垂直,得到DG與與AB平行,根據(jù)平行線得線段對(duì)應(yīng)成比例,由OA=OB,等量代換后利用比例式得到NE與AB平行,再根據(jù)DM與OB平行,同理得到比例式,且等量代換后,得到NE=ND,即圓心距ON等于兩半徑相加,故兩圓位置關(guān)系為外切;設(shè)出圓N的半徑為r,由NE平行于AB,得到比例式,代入后列出關(guān)于r的方程,求出方程的解即可得到r的值.
          解答:精英家教網(wǎng)解:(1)∵AB是⊙O的直徑,BC是⊙O的切線,∴AB⊥BC,
          設(shè)⊙O的半徑為r,
          在Rt△OBC中,
          OC2=OB2+CB2,
          ∴(r+2)2=r2+32
          解得:r=
          5
          4
          ,(1分)
          ∴⊙O得半徑為
          5
          4
          ;

          (2)如圖,連接OF.
          ∵AO=OB,BF=EF,
          ∴OF∥AE,
          ∴∠1=∠A,∠2=∠ADO,
          又∵OA=OD,∴∠A=∠ADO,
          ∴∠1=∠2,
          又∵OB=OD,OF=OF,
          ∴△OBF≌△ODF(1分)
          ∴∠ODF=∠OBF=90°,即DF⊥OD(1分)
          ∵OD是半徑,
          ∴DF是⊙O的切線;

          (3)⊙O與⊙N外切.
          理由如下:如圖,連接NE,精英家教網(wǎng)
          ∵DG⊥BC,AB⊥BC,
          ∴DG∥AB,
          DM
          AO
          =
          EM
          EO
          ,
          NM
          NB
          =
          DM
          OB
          ,
          又∵AO=OB,∴
          EM
          EO
          =
          NM
          NB

          ∴NE∥AB,
          NE
          OB
          =
          NM
          MB
          ,又DM∥OB,
          NM
          MB
          =
          ND
          DO
          ,∴
          NE
          OB
          =
          ND
          DO

          ∵OB=OD,∴NE=ND,
          ∴圓心距ON等于⊙N的半徑與⊙O的半徑的和,
          ∴⊙O與⊙N外切.
          設(shè)⊙N的半徑為x,
          ∵NE∥AB,
          NC
          OC
          =
          NE
          OB
          ,即
          2-x
          5
          4
          +2
          =
          x
          5
          4
          ,
          x=
          5
          9
          ,
          ∴⊙N的半徑為
          5
          9
          點(diǎn)評(píng):此題綜合考查了切線的性質(zhì)與判斷,兩圓位置關(guān)系的判別方法,全等三角形的判別與性質(zhì)以及平行分線段成比例.
          其中證明切線的方法有兩種:1、已知點(diǎn),連接此點(diǎn)與圓心,證明夾角為直角;2、未知點(diǎn),過(guò)圓心作垂線,證明垂線段等于半徑.
          圓與圓位置關(guān)系的判別方法是:(R,r為兩圓的半徑,d為兩圓心間的距離)
          當(dāng)0≤d<R-r時(shí),兩圓的位置關(guān)系為內(nèi)含;當(dāng)d=R-r時(shí),兩圓的位置關(guān)系是內(nèi)切;當(dāng)R-r<d<R+r時(shí),兩圓的位置關(guān)系是相交;當(dāng)d=R+r時(shí),兩圓的位置關(guān)系是外切;當(dāng)d>R+r時(shí),兩圓的位置關(guān)系是外離.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
          (1)判斷DC是否為⊙O的切線,并說(shuō)明理由;
          (2)求扇形BOC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
          (1)求證:DF是⊙O的切線;
          (2)若DF=3,DE=2
          ①求
          BEAD
          值;
          ②求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
          EB
          的中點(diǎn),則下列結(jié)論不成立的是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
          求證:PA為⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
          (1)求證:直線CD為圓O的切線.
          (2)當(dāng)AB=2BE,DE=2
          3
          時(shí),求AD的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案