日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
          (1)若PC=PD,求PB的長.
          (2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
          (3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關(guān)系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

          【答案】分析:(1)由于PC,PD都是切線,那么三角形ACP和PDB就都是直角三角形,那么我們可以用勾股定理來表示出PC2和PD2,由于PC=PD,那么可得出關(guān)于CA2、AP2、PB2、BD2的比例關(guān)系式,已知了AC,BD,AB的值如果我們用PB表示出AP,就能在這個比例關(guān)系式中求出PB的值;
          (2)方法同(1)類似只不過相等改成了PC2+PD2=4,可用(1)的方法先求出PB的長,然后根據(jù)PB的取值范圍來判斷有幾個符合條件的值;
          (3)要兩個三角形相似,已知的條件有∠ACP=∠BDP=90°,AC:BD=2:1,那么只要讓PC:PD=2:1,就能構(gòu)成三角形相似判定中兩組對應(yīng)邊對應(yīng)成比例且夾角相等的條件,兩三角形相似后∠CPA=∠CPB,如果延長CP那么CP延長線與PD組成的角中,PB正好是角平分線,根據(jù)角平分線的點到角兩邊的距離相等,可得出B到CP延長線的距離等于半徑BD的長,因此CP與⊙B也相切.
          解答:解:(1)∵PC切⊙A點于C,
          ∴PC⊥AC,
          PC2=PA2-AC2
          同理PD2=PB2-BD2
          ∵PC=PD,
          ∴PA2-AC2=PB2-BD2
          設(shè)PB=x,PA=4-x代入得x2-12=(4-x)2-22,
          解得x=,1<<2,
          即PB的長為(PA長為>2),

          (2)假定存在一點P使PC2+PD2=4,設(shè)PB=x,
          則PD2=x2-1 PC2=(4-x)2-22,
          代入條件得(4-x)2-22+x2-1=4,
          代簡得2x2-8x+7=0解得x=2±
          ∵P在兩圓間的圓外部分,
          ∴1<PB<2即1<x<2,
          ∴滿足條件的P點只有一個,這時PB=2-,

          (3)當PC:PD=2:1或PB=時,也有△PCA∽△PDB,
          這時,在△PCA與△PDB中,
          ∠C=∠D=90°,
          ∴△PCA∽△PDB,
          ∴∠BPD=∠APC=∠BPE(E在CP的延長線上),
          ∴B點在∠DPE的角平分線上,B到PD與PE的距離相等,
          ∵⊙B與PD相切,
          ∴⊙B也與CP的延長線PE相切.
          點評:本題主要考查了切線性質(zhì)的判定以及相似三角形的判定,具有一定的綜合性,難度較大.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:填空題

          (2003•舟山)如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經(jīng)過點B,則這條拋物線的關(guān)系式為   

          查看答案和解析>>

          科目:初中數(shù)學 來源:2003年浙江省舟山市中考數(shù)學試卷(解析版) 題型:填空題

          (2003•舟山)如圖,直線y=x+2與x軸交于點A,與y軸交于點B,AB⊥BC,且點C在x軸上,若拋物線y=ax2+bx+c以C為頂點,且經(jīng)過點B,則這條拋物線的關(guān)系式為   

          查看答案和解析>>

          科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

          (2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
          (1)若PC=PD,求PB的長.
          (2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
          (3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關(guān)系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2003年浙江省舟山市中考數(shù)學試卷(解析版) 題型:選擇題

          (2003•舟山)如圖是人字型屋架的設(shè)計圖,由AB,AC,BC,AD四根鋼條焊接而成,其中A,B,C,D均為焊接點,且AB=AC,D為BC的中點,現(xiàn)在焊接所需的四根鋼條已截好,且已標出BC的中點,如果接工身邊只有檢驗直角的角尺,那么為了準確快速地焊接,他首先應(yīng)取的兩根鋼條及焊接點是( )

          A.AB和BC焊接點B
          B.AB和AC焊接點A
          C.AB和AD焊接點A
          D.AD和BC焊接點D

          查看答案和解析>>

          科目:初中數(shù)學 來源:2003年浙江省舟山市中考數(shù)學試卷(解析版) 題型:選擇題

          (2003•舟山)如圖,用8塊相同的長方形地磚拼成一個矩形地面,則每塊長方形地磚的長和寬分別是( )

          A.48cm,12cm
          B.48cm,16cm
          C.44cm,16cm
          D.45cm,15cm

          查看答案和解析>>

          同步練習冊答案