日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          (1)求拋物線與x軸的另一個交點B的坐標;
          (2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
          (3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.
          【答案】分析:(1)根據(jù)拋物線的解析式可知:拋物線的對稱軸為x=-2,由此可求出B點的坐標.
          (2)可將A點坐標代入拋物線的解析式中,求出a與t的關系式,然后將拋物線中的t用a替換掉,根據(jù)這個拋物線的解析式可表示出C點的坐標,然后根據(jù)梯形的面積求出a的值,即可得出拋物線的解析式.
          (3)可根據(jù)E點橫坐標與縱坐標的比例關系以及所處的象限設出E點的坐標,然后將它代入拋物線的解析式中即可求出E點的坐標.要使PA+EP最小,根據(jù)軸對稱圖象的性質(zhì)和兩點間線段最短可知:如果去A關于拋物線對稱軸的對稱點B,連接BE,那么BE與拋物線對稱軸的交點就是P點的位置,可先求出直線BE的解析式然后聯(lián)立拋物線的對稱軸方程即可求出P的坐標.
          解答:解:(1)依題意,拋物線的對稱軸為x=-2,
          ∵拋物線與x軸的一個交點為A(-1,0),
          ∴由拋物線的對稱性,可得拋物線與x軸的另一個交點B的坐標為(-3,0).

          (2)∵拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          ∴a(-1)2+4a(-1)+t=0
          ∴t=3a
          ∴y=ax2+4ax+3a
          ∴D(0,3a)
          ∴梯形ABCD中,AB∥CD,且點C在拋物線y=ax2+4ax+3a上,
          ∵C(-4,3a)
          ∴AB=2,CD=4
          ∵梯形ABCD的面積為9
          (AB+CD)•OD=9
          (2+4)•|3a|=9
          ∴a=±1
          ∴所求拋物線的解析式為y=x2+4x+3或y=-x2-4x-3.

          (3)設點E坐標為(x,y),
          依題意,x<0,y>0,且
          ∴y=-x
          ①設點E在拋物線y=x2+4x+3上,
          ∴y=x2+4x+3
          解方程組
          ,
          ∵點E與點A在對稱軸x=-2的同側(cè)
          ∴點E坐標為(,).
          設在拋物線的對稱軸x=-2上存在一點P,使△APE的周長最。
          ∵AE長為定值,
          ∴要使△APE的周長最小,只須PA+PE最小
          ∴點A關于對稱軸x=-2的對稱點是B(-3,0)
          ∴由幾何知識可知,P是直線BE與對稱軸x=-2的交點
          設過點E、B的直線的解析式為y=mx+n

          解得
          ∴直線BE的解析式為y=x+
          ∴把x=-2代入上式,得y=
          ∴點P坐標為(-2,
          ②設點E在拋物線y=-x2-4x-3上
          ∴y=-x2-4x-3,
          解方程組
          消去y,得
          ∴△<0
          ∴此方程組無實數(shù)根.
          綜上,在拋物線的對稱軸上存在點P(-2,),使△APE的周長最。
          點評:本題主要考查了二次函數(shù)解析式的確定、圖象面積的求法等知識點.綜合性強,難度較大.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:2010年中考數(shù)學模擬考試卷(浙教版)(解析版) 題型:解答題

          (2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          (1)求拋物線與x軸的另一個交點B的坐標;
          (2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
          (3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年廣東省廣州市鐵一中學中考數(shù)學二模試卷(陳學峰)(解析版) 題型:解答題

          (2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          (1)求拋物線與x軸的另一個交點B的坐標;
          (2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
          (3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年北京市中考數(shù)學模擬試卷(9)(解析版) 題型:解答題

          (2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          (1)求拋物線與x軸的另一個交點B的坐標;
          (2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
          (3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2005年福建省廈門市五校聯(lián)考數(shù)學試卷(解析版) 題型:解答題

          (2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          (1)求拋物線與x軸的另一個交點B的坐標;
          (2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
          (3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2003年北京市中考數(shù)學試卷(解析版) 題型:解答題

          (2003•北京)已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
          (1)求拋物線與x軸的另一個交點B的坐標;
          (2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
          (3)E是第二象限內(nèi)到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側(cè),問:在拋物線的對稱軸上是否存在點P,使△APE的周長最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案