日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,二次函數(shù)y=-
          1
          2
          x2+c
          的圖象經(jīng)過(guò)點(diǎn)D(-
          3
          ,
          9
          2
          )
          ,與x軸交于A、B兩點(diǎn).
          精英家教網(wǎng)
          (1)求c的值;
          (2)如圖①,設(shè)點(diǎn)C為該二次函數(shù)的圖象在x軸上方的一點(diǎn),直線AC將四邊形ABCD的面積二等分,試證明線段BD被直線AC平分,并求此時(shí)直線AC的函數(shù)解析式;
          (3)設(shè)點(diǎn)P、Q為該二次函數(shù)的圖象在x軸上方的兩個(gè)動(dòng)點(diǎn),試猜想:是否存在這樣的點(diǎn)P、Q,使△AQP≌△ABP?如果存在,請(qǐng)舉例驗(yàn)證你的猜想;如果不存在,請(qǐng)說(shuō)明理由.(圖②供選用)
          分析:(1)將D點(diǎn)坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)c的值;
          (2)若△ACD與△ABC的面積相等,則兩個(gè)三角形中,AC邊上的高相等,設(shè)AC、BD的交點(diǎn)為E,若以CE為底,AC邊上的高為高,可證得△CED和△CEB的面積相等;這兩個(gè)三角形中,若以DE、BE為底,則兩個(gè)三角形同高,那么DE=BE,由此可證得AC平分BD;
          由于E是BD的中點(diǎn),根據(jù)B、D的坐標(biāo),即可求出E點(diǎn)的坐標(biāo),根據(jù)A、E的坐標(biāo)即可用待定系數(shù)法求出直線AC的解析式;
          (3)設(shè)拋物線頂點(diǎn)為N(0,6),在Rt△AON中,易得AN=4
          3
          ,于是以A點(diǎn)為圓心,AB=4
          3
          為半徑作圓與拋物線在x軸上方一定有交點(diǎn)Q,連接AQ,再作∠QAB平分線AP交拋物線于P,連接BP,PQ,此時(shí)由“邊角邊”易得△AQP≌△ABP.
          解答:精英家教網(wǎng)解:(1)∵拋物線經(jīng)過(guò)D(-
          3
          9
          2
          ),則有
          -
          1
          2
          ×3+c=
          9
          2
          ,
          解得c=6;

          (2)設(shè)AC與BD的交點(diǎn)為E,過(guò)D作DM⊥AC于M,過(guò)B作BN⊥AC于N
          ∵S△ADC=S△ACB
          1
          2
          AC•DM=
          1
          2
          AC•BN,即DM=BN;
          1
          2
          CE•DM=
          1
          2
          CE•BN,
          即S△CED=S△BEC(*);
          設(shè)△BCD中,BD邊上的高為h,由(*)得:
           
          1
          2
          DE•h=
          1
          2
          BE•h,即BE=DE,故AC平分BD;
          易知:A(-2
          3
          ,0),B(2
          3
          ,0),D(-
          3
          9
          2
          ),
          由于E是BD的中點(diǎn),則E(
          3
          2
          ,
          9
          4
          );
          設(shè)直線AC的解析式為y=kx+b,則有:
           
          -2
          3
          k+b=0
          3
          2
          k+b=
          9
          4
          ,
          精英家教網(wǎng)解得
          k=
          3
          3
          10
          b=
          9
          5
          ;
          ∴直線AC的解析式為y=
          3
          3
          10
          x+
          9
          5


          (3)存在.
          設(shè)拋物線頂點(diǎn)為N(0,6),在Rt△AON中,易得AN=4
          3
          ,
          于是以A點(diǎn)為圓心,AB=4
          3
          為半徑作圓與拋物線在x軸上方一定有交點(diǎn)Q,連接AQ,
          再作∠QAB平分線AP交拋物線于P,連接BP,PQ,
          此時(shí)由“邊角邊”易得△AQP≌△ABP.
          點(diǎn)評(píng):此題主要考查了一次函數(shù)與二次函數(shù)解析式的確定、三角形面積的求法、以及全等三角形和直角三角形的判定和性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D(0,
          7
          9
          3
          ),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長(zhǎng)為6.
          (1)求二次函數(shù)的解析式;
          (2)在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
          (3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過(guò)點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B(6,0).
          (1)求二次函數(shù)與一次函數(shù)的解析式;
          (2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,如圖的二次函數(shù)圖象(部分)刻畫(huà)了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問(wèn)題:
          (1)求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
          (2)求截止到幾月末公司累積利潤(rùn)可達(dá)30萬(wàn)元;
          (3)從第幾個(gè)月起公司開(kāi)始盈利?該月公司所獲利潤(rùn)是多少萬(wàn)元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
          0(填“>”、“<”、“=”);
          (2)當(dāng)x滿足
          x<-4或x>2
          x<-4或x>2
          時(shí),ax2+bx+c>0;
          (3)當(dāng)x滿足
          x<-1
          x<-1
          時(shí),ax2+bx+c的值隨x增大而減。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案