日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:一元二次方程x2+px+q+1=0的一根為2.
          (1)求q關(guān)于p的關(guān)系式;
          (2)求證:拋物線y=x2+px+q+1與x軸總有交點(diǎn);
          (3)當(dāng)p=-1時(shí),(2)中的拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),A在B的左側(cè),若P點(diǎn)在拋物線上,當(dāng)S△BPC=4時(shí),求P點(diǎn)的坐標(biāo).
          分析:(1)將2代替一元二次方程x2+px+q+1=0中的x即可得到pq之間的關(guān)系式;
          (2)證明拋物線與x軸總有交點(diǎn)即可證明其根的判別式中大于零即可;
          (3)利用p=-1求得拋物線的解析式,利用圍成的三角形的面積求得P點(diǎn)的坐標(biāo)即可.
          解答:精英家教網(wǎng)(1)解:∵方程的根為2,
          ∴4+2p+q+1=0,
          ∴q=-2p-5;

          (2)證明:△=p2-4(q+1),
          =p2-4(-2p-5+1),
          =p2+8p+16,
          =(p+4)2,
          ∵(p+4)2≥0,
          ∴△≥0,
          ∴拋物線y=x2+px+q+1與x軸總有交點(diǎn);

          (3)解:當(dāng)p=-1時(shí),q=-2×(-1)-5=-3,
          ∴拋物線的解析式為:y=x2-x-2.
          ∵B(2,0)C(0,-2),
          ∴BC=2
          2
          ,∠OBC=45°.
          ∵S△PBC=4.
          1
          2
          BC•hBC=4

          hBC=2
          2

          過B點(diǎn)作BD⊥BC交y軸于點(diǎn)D,
          ∴DO=BO=CO,
          ∴D點(diǎn)的坐標(biāo)為:(0,2),
          ∴BD=2
          2
          ,
          過D點(diǎn)作DE∥BC交x軸于點(diǎn)E,
          ∵∠ODB=∠OBD=45°∠EDB=90°,
          ∴∠EDO=45°,
          ∴E(-2,0),
          設(shè)直線DE的解析式為y=kx+b(k≠0),
          -2k+b=0
          b=2
          ,
          ∴解得
          k=1
          b=2
          ,
          ∴直線DE的解析式為y=x+2.
          設(shè)直線DE與拋物線的交點(diǎn)P(x,y),
          y=x+2
          y=x2-x-2

          x1=1+
          5
          y1=3+
          5
          x2=1-
          5
          y2=3-
          5
          ,
          p1(1-
          5
          ,3-
          5
          )
          ,p2(1+
          5
          ,3+
          5
          )
          點(diǎn)評(píng):本題考查了函數(shù)綜合知識(shí),函數(shù)綜合題是初中數(shù)學(xué)中覆蓋面最廣、綜合性最強(qiáng)的題型.近幾年的中考?jí)狠S題多以函數(shù)綜合題的形式出現(xiàn).解決函數(shù)綜合題的過程就是轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、方程思想的應(yīng)用過程.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          10、已知關(guān)于x一元二次方程ax2+bx+c=0有一個(gè)根為1,則a+b+c=
          0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:一元二次方程kx2+4x+4=0(k≠0),當(dāng)k為何值時(shí)方程有兩個(gè)相等的實(shí)數(shù)根( 。
          A、k=
          1
          2
          B、k=-
          1
          2
          C、k=1
          D、k=-1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•婁底)已知:一元二次方程
          1
          2
          x2+kx+k-
          1
          2
          =0.
          (1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
          (2)設(shè)k<0,當(dāng)二次函數(shù)y=
          1
          2
          x2+kx+k-
          1
          2
          的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;
          (3)在(2)的條件下,若拋物線的頂點(diǎn)為C,過y軸上一點(diǎn)M(0,m)作y軸的垂線l,當(dāng)m為何值時(shí),直線l與△ABC的外接圓有公共點(diǎn)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如下一元二次方程:
          第1個(gè)方程:3x2+2x-1=0;
          第2個(gè)方程:5x2+4x-1=0;
          第3個(gè)方程:7x2+6x-1=0;

          按照上述方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)的排列規(guī)律,則第8個(gè)方程為
          17x2 +16x-1=0
          17x2 +16x-1=0
          ;第n(n為正整數(shù))個(gè)方程為
          (2n+1)x2 +2nx-1=0
          (2n+1)x2 +2nx-1=0
          ,其兩個(gè)實(shí)數(shù)根為
          x1=-1,x2=
          1
          2n+1
          x1=-1,x2=
          1
          2n+1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知一個(gè)一元二次方程的兩根分別為x1=1,x2=-2,請(qǐng)你寫出符合這兩個(gè)根的一個(gè)一元二次方程:
          x2+x-2=0(答案不唯一).
          x2+x-2=0(答案不唯一).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案