日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)E是BC邊上一點(diǎn),∠DEF=45°且角的兩邊分別與邊AB,射線CA交于點(diǎn)P,Q.
          (1)如圖2,若點(diǎn)E為BC中點(diǎn),將∠DEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),DE與邊AB交于點(diǎn)P,EF與CA的延長線交于點(diǎn)Q.設(shè)BP為x,CQ為y,試求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (2)如圖3,點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng)(不與B,C重合),且DE始終經(jīng)過點(diǎn)A,EF與邊AC交于Q點(diǎn).探究:在∠DEF運(yùn)動(dòng)過程中,△AEQ能否構(gòu)成等腰三角形,若能,求出BE的長;若不能,請(qǐng)說明理由.
          分析:(1)根據(jù)條件由勾股定理可以求出BC的值,再求出∠DEB=∠EQC,就可以得出△BPE∽△CEQ,由相似三角形的性質(zhì)就可以得出結(jié)論;
          (2))由∠AEF=∠B=∠C,且∠AQE>∠C可以得出∠AQE>∠AEF.從而有AE≠AQ,再分類討論,當(dāng)AE=EQ時(shí)和AQ=EQ時(shí)根據(jù)等腰三角形的性質(zhì)和全等三角形的性質(zhì)就可以求出BE的值.
          解答:解:(1)∵∠BAC=90°,AB=AC=2,
          ∴∠B=∠C,BC=2
          2

          又∵∠FEB=∠FED+∠DEB=∠EQC+∠C,∠DEF=∠C,
          ∴∠DEB=∠EQC,

          ∴△BPE∽△CEQ,
          BP
          BE
          =
          CE
          CQ

          設(shè)BP為x,CQ為y,
          x
          2
          =
          2
          y

          y=
          2
          x
          ,自變量x的取值范圍是0<x<1;
                
          (2)∵∠AEF=∠B=∠C,且∠AQE>∠C,
          ∴∠AQE>∠AEF.
          ∴AE≠AQ.
          當(dāng)AE=EQ時(shí),
          ∴∠EAQ=∠EQA,
          ∵∠AEQ=45°,
          ∴∠EAQ=∠EQA=67.5°,
          ∵∠BAC=90°,∠C=45,
          ∴∠BAE=∠QEC=22.5°.
          ∵在△ABE和△ECQ中,
          ∠B=∠C
          ∠BAE=∠CEQ
          AE=EQ
          ,
          ∴△ABE≌ECQ(AAS).

          ∴CE=AB=2.
          ∴BE=BC-EC=2
          2
          -2
          ;
          當(dāng)AQ=EQ時(shí),可知∠QAE=∠QEA=45°,
          ∴AE⊥BC.
          ∴點(diǎn)E是BC的中點(diǎn).
          ∴BE=
          2

          綜上,在∠DEF運(yùn)動(dòng)過程中,△AEQ能成等腰三角形,此時(shí)BE的長為2
          2
          -2
          2
          點(diǎn)評(píng):本題考查了等腰直角三角形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)合理利用相似三角形的性質(zhì)和全等三角形的性質(zhì)是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點(diǎn)在第一象限,A點(diǎn)坐標(biāo)為(1,0).△OCD與△OAB關(guān)于y軸對(duì)稱.
          (1)求經(jīng)過D,O,B三點(diǎn)的拋物線的解析式;
          (2)若將△OAB向上平移k(k>0)個(gè)單位至△O′A′B(如圖乙),則經(jīng)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸在y軸的
           
          .(填“左側(cè)”或“右側(cè)”)
          (3)在(2)的條件下,設(shè)過D,O,B′三點(diǎn)的精英家教網(wǎng)拋物線的對(duì)稱軸為直線x=m.求當(dāng)k為何值時(shí),|m|=
          13

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•寧德)某數(shù)學(xué)興趣小組開展了一次活動(dòng),過程如下:
          如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點(diǎn)放在A上,從AB邊開始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
          (1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請(qǐng)你證明小敏發(fā)現(xiàn)的結(jié)論;
          (2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2
          同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決;小穎的想法:將△ABD沿AD所在的直線對(duì)折得到△ADF,連接EF(如圖2)
          小亮的想法:將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
          小敏繼續(xù)旋轉(zhuǎn)三角板,在探究中得出當(dāng)45°<α<135°且α≠90°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立,先請(qǐng)你繼續(xù)研究:當(dāng)135°<α<180°時(shí)(如圖4)等量關(guān)系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•鷹潭模擬)某校九年級(jí)(1)班數(shù)學(xué)興趣小組開展了一次活動(dòng),過程如下:
          如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小明將一塊直角三角板的直角頂點(diǎn)放在斜邊BC邊的中點(diǎn)O上,從BC邊開始繞點(diǎn)A順時(shí)針旋轉(zhuǎn),其中三角板兩條直角邊所在的直線分別交AB、AC于點(diǎn)E、F.
          (1)小明在旋轉(zhuǎn)中發(fā)現(xiàn):在圖1中,線段AE與CF相等.請(qǐng)你證明小明發(fā)現(xiàn)的結(jié)論;
          (2)小明將一塊三角板中含45°角的頂點(diǎn)放在點(diǎn)A上,從BC邊開始繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.當(dāng)0°<α≤45°時(shí),小明在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:
          BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
          小穎的方法:將△ABD沿AD所在的直線對(duì)折得到△ADF,連接EF(如圖2);
          小亮的方法:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3).
          請(qǐng)你從中任選一種方法進(jìn)行證明;
          (3)小明繼續(xù)旋轉(zhuǎn)三角板,在探究中得出:當(dāng)45°<α<135°且α≠90°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立.現(xiàn)請(qǐng)你繼續(xù)探究:當(dāng)135°<α<180°時(shí)(如圖4),等量關(guān)系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點(diǎn)放在A上,從AB邊開始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
          (1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請(qǐng)你證明小敏發(fā)現(xiàn)的結(jié)論;
          (2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決;小穎的想法:將△ABD沿AD所在的直線對(duì)折得到△ADF(如圖2);小亮的想法:將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ACG(如圖3).請(qǐng)你選擇其中的一種方法證明小敏的發(fā)現(xiàn)的是正確的.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案