日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在RtABC中,∠ACB90°.∠ABC的平分線交AC于點(diǎn)O,以點(diǎn)O為圓心,OC為半徑.在△ABC同側(cè)作半圓O

          1)求證:ABO相切;

          2)若AB5,AC4,求O的半徑.

          【答案】1)見解析;(2O的半徑長(zhǎng)是

          【解析】

          1)過(guò)OOHABH,得到∠BHO=BCO=90°,根據(jù)角平分線的定義得到∠CBO=HBO,根據(jù)全等三角形的性質(zhì)得到OH=OC,于是得到AB與⊙O相切;

          2)求得BC的長(zhǎng),然后證明BC是切線,利用切線長(zhǎng)定理求得BH的長(zhǎng),證明△OAH∽△BAC,利用相似三角形的性質(zhì)求解.

          1)證明:如圖,過(guò)OOHABHACB90°

          ∴∠BHO=∠BCO90°,

          BO平分∠ABC

          ∴∠CBO=∠HBO,

          BOBO,

          ∴△CBO≌△HBOAAS),

          OHOC,

          ABO相切;

          2)解:∵在直角△ABC中,AB5AC4,

          BC

          ∵∠ACB90°,即BCAC,

          BC是半圓的切線,

          又∵AB與半圓相切,

          BHBC3AHABBH532

          AB是切線,

          OHAB

          ∴∠OHA=∠BCA,

          又∵∠A=∠A,

          ∴△OAH∽△BAC

          解得OH.即O的半徑長(zhǎng)是

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克25元,連續(xù)兩次漲價(jià)后每千克水果現(xiàn)在的價(jià)格為36元.

          1)若每次漲價(jià)的百分率相同.求每次漲價(jià)的百分率;

          2)若進(jìn)價(jià)不變,按現(xiàn)價(jià)售出,每千克可獲利15元,但該水果出現(xiàn)滯銷,商場(chǎng)決定降價(jià)m元出售,同時(shí)把降價(jià)的幅度m控制在的范圍,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),每天銷售量 (千克)與降價(jià)的幅度m(元)成正比例,且當(dāng)時(shí), m的函數(shù)解析式;

          3)在(2)的條件下,若商場(chǎng)每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應(yīng)降價(jià)多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過(guò)點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過(guò)點(diǎn)PPBl于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長(zhǎng)線交直線l于點(diǎn)F,點(diǎn)A的中點(diǎn).

          (1)求證:直線l是⊙O的切線;

          (2)若PA=6,求PB的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,菱形ABCD中,AB20,連接BD,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC

          1)求證:AECE;

          2)若sinABD,當(dāng)點(diǎn)P在線段BC上時(shí),若BP8,求PEC的面積;

          3)若∠ABC45°,當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),請(qǐng)求出PEC是等腰三角形時(shí)BP的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知O的半徑為3,A為圓內(nèi)一定點(diǎn),AO1,P為圓上一動(dòng)點(diǎn),以AP為邊作等腰△APQ,APPQ,∠APQ120°,則OQ的最大值為( 。

          A.1+3B.1+2C.3+D.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】二次函數(shù)yax2+bx+ca,b,c為常數(shù),且a≠0)中的xy的部分對(duì)應(yīng)值如表:

          x

          1

          0

          1

          3

          y

          1

          3

          5

          3

          下列結(jié)論錯(cuò)誤的是( 。

          A.ac0

          B.當(dāng)x1時(shí),y的值隨x的增大而減小

          C.3是方程ax2+b1x+c0的一個(gè)根

          D.當(dāng)﹣1x3時(shí),ax2+b1x+c0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn)拋物線的對(duì)稱軸是直線軸的交點(diǎn)為點(diǎn)且經(jīng)過(guò)點(diǎn)兩點(diǎn).

          1)求拋物線的解析式;

          2)點(diǎn)為拋物線對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),請(qǐng)你求出點(diǎn)的坐標(biāo);

          3)拋物線上是否存在點(diǎn),過(guò)點(diǎn)軸于點(diǎn)使得以點(diǎn)為頂點(diǎn)的三角形與相似?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2016年共享單車上市以來(lái),給人們的出行提供了便利,受到了廣大市民的青睞,某公司為了了解員工上下班回家的路程(設(shè)路程為x千米)情況,隨機(jī)抽取了若干名員工進(jìn)行了問(wèn)卷調(diào)查,現(xiàn)將這些員工的調(diào)查結(jié)果分為四個(gè)等級(jí),A0x3;B3x6;C6x9;Dx9;并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:

          1)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖,并求mn的值;

          2)在扇形統(tǒng)計(jì)圖中,求扇形“C”所對(duì)應(yīng)的圓心角α的度數(shù);

          3)若該公司有600名員工,請(qǐng)你估計(jì)該公司路程在6千米以上選擇共享單車上下班的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本

          1當(dāng)銷售單價(jià)為70元時(shí),每天的銷售利潤(rùn)是多少?

          2求出每天的銷售利潤(rùn)y與銷售單價(jià)x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

          3如果該企業(yè)每天的總成本不超過(guò)7000元,那么銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?每天的總成本=每件的成本×每天的銷售量

          查看答案和解析>>

          同步練習(xí)冊(cè)答案