【題目】(1)問題發(fā)現(xiàn):如圖1,在等邊中,點(diǎn)
為
邊上一動點(diǎn),
交
于點(diǎn)
,將
繞點(diǎn)
順時針旋轉(zhuǎn)
得到
,連接
.則
與
的數(shù)量關(guān)系是_____,
的度數(shù)為______.
(2)拓展探究:如圖2,在中,
,
,點(diǎn)
為
邊上一動點(diǎn),
交
于點(diǎn)
,當(dāng)∠ADF=∠ACF=90°時,求
的值.
(3)解決問題:如圖3,在中,
,點(diǎn)
為
的延長線上一點(diǎn),過點(diǎn)
作
交
的延長線于點(diǎn)
,直接寫出當(dāng)
時
的值.
【答案】(1),
;(2)
;(3)
.
【解析】
(1)由題意可證△DEC是等邊三角形,∠AED=120°,可得DE=DC,由旋轉(zhuǎn)性質(zhì)可得∠ADF=60°=∠EDC,AD=DF,由“SAS”可證△ADE≌△FDC,可得AE=CF,∠AED=∠DCF=120°,可得∠ACF=60°;
(2)通過證明△DAE∽△DFC,可得,通過證明△EDC∽△ABC,可得
,即可求
的值;
(3)通過證明△DAE∽△DFC,可得,通過證明△EDC∽△ABC,可得
,即可求的值
;
解:(1)∵DE∥AB
∴∠ABC=∠EDC=60°,∠BAC=∠DEC=60°
∴△DEC是等邊三角形,∠AED=120°
∴DE=DC,
∵將AD繞點(diǎn)D順時針旋轉(zhuǎn)60°得到DF,
∴∠ADF=60°=∠EDC,AD=DF
∴∠ADE=∠FDC,且CD=DE,AD=DF
∴△ADE≌△FDC(SAS)
∴AE=CF,∠AED=∠DCF=120°
∴∠ACF=60°,
故答案為AE=CF,60°
(2)∵∠ABC=90°,∠ACB=60°,
∴∠BAC=30°
∴tan∠BAC=
∵DE∥AB
∴∠EDC=∠ABC=90°
∵∠ADF=90°,
∴∠ADE=∠FDC
∵∠ACF=90°,∠AED=∠EDC+∠ACB,∠FCD=∠ACF+∠ACB
∴∠AED=∠FCD,且∠ADE=∠FDC
∴△DAE∽△DFC
∵DE∥AB
∴△EDC∽△ABC
(3)∵AB∥DE
∴∠ABC=∠BDE=∠ADF,∠BAC=∠E
∴∠BDE+∠ADB=∠ADF+∠ADB
∴∠ADE=∠CDF,
∵∠ACD=∠ABC+∠BAC=∠ACF+∠DCF,且∠ACF=∠ABC
∴∠BAC=∠DCF=∠E,且∠ADE=∠CDF
∴△ADE∽△FDC
∵DE∥AB
∴△EDC∽△ABC
∵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若用“*”表示一種運(yùn)算規(guī)則,我們規(guī)定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下說法中錯誤的是( 。
A. 不等式(﹣2)*(3﹣x)<2的解集是x<3
B. 函數(shù)y=(x+2)*x的圖象與x軸有兩個交點(diǎn)
C. 在實(shí)數(shù)范圍內(nèi),無論a取何值,代數(shù)式a*(a+1)的值總為正數(shù)
D. 方程(x﹣2)*3=5的解是x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG為__米(結(jié)果精確到1m).
參考數(shù)據(jù):sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求證:四邊形ABCD是菱形;
(2)過點(diǎn)D作DE⊥BD,交BC的延長線于點(diǎn)E,若BC=5,BD=8,求四邊形ABED的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,
,
,點(diǎn)
是
的中點(diǎn),點(diǎn)
是邊
上一動點(diǎn),沿
所在直線把
翻折到
的位置,若線段
交
于點(diǎn)
,且
為直角三角形,則
的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC的頂點(diǎn)O在坐標(biāo)原點(diǎn),OA邊在x軸上,OA=2,AC=1,把△OAC繞點(diǎn)A按順時針方向旋轉(zhuǎn)到△O′AC′,使得點(diǎn)O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過程中線段OC掃過部分(陰影部分)的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班開展安全知識競賽活動,班長將所有同學(xué)的成績(得分為整數(shù),滿分為100分)分成四類,并制作了如下的統(tǒng)計圖表:
類別 | 成績 | 頻數(shù) |
甲 | 60≤m<70 | 5 |
乙 | 70≤m<80 | a |
丙 | 80≤m<90 | 10 |
丁 | 90≤m≤100 | 5 |
根據(jù)圖表信息,回答下列問題:
(1)該班共有學(xué)生________人;表中a=________;
(2)將丁類的五名學(xué)生分別記為A、B、C、D、E,現(xiàn)從中隨機(jī)挑選兩名學(xué)生參加學(xué)校的決賽,請借助樹狀圖、列表或其他方式求B一定能參加決賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點(diǎn)A為圓心,BC邊的長為半徑作⊙A;
②以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,
分別是正方形
的邊
,
上的點(diǎn),且
,以
為邊作正方形
,
與
交于點(diǎn)
,連接
.
(1)求證:;
(2)若是
的中點(diǎn),求證:
為
的中點(diǎn);
(3)連接,設(shè)
,
,
,在(2)的條件下,判斷
是否成立?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com