日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. AB是⊙O的直徑,D是⊙O上一動點,延長AD到C使CD=AD,連接BC,BD.
          (1)證明:當D點與A點不重合時,總有AB=BC;
          (2)設⊙O的半徑為2,AD=x,BD=y,用含x的式子表示y;
          (3)BC與⊙O是否有可能相切?若不可能相切,則說明理由;若能相切,則指出x為何值時相切.

          【答案】分析:(1)已知CD=AD,只要再證明BD⊥AC,就可以證明BD是AC的垂直平分線,則得到AB=BC.
          (2)在Rt△ABD中,根據(jù)勾股定理,就得到關(guān)于AD,BD的關(guān)系式,就可以用含x的式子表示y.
          (3)當BC與⊙O相切時,BC⊥AB,就可以求出AD的長.
          解答:(1)證明:∵AB為⊙O直徑,
          ∴BD⊥AC,(1分)
          又∵DC=AD,
          ∴BD是AC的垂直平分線,
          ∴AB=BC;(3分)

          (2)解:在Rt△ABD中,BD2=AB2-AD2,(5分)
          ∴y2=42-x2,(6分)
          ;(7分)

          (3)解:BC與⊙O有可能相切,(8分)
          當BC與⊙O相切時,BC⊥AB,
          ∵AB=BC,
          ∴∠A=45°,(9分)
          ∴x=AB=2(10分).
          點評:本題考查了直徑所對的圓周角是直角,并且考查了勾股定理,切線的性質(zhì)定理,切線垂直于過切點的半徑.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,求sin∠OCE的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點P.求證:AC2=AE•AP.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•大港區(qū)一模)如圖,AB是⊙O的直徑,C為圓上一點,∠BAC的平分線交于⊙O于點D,若∠ABC=40°,那么∠DBC的度數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知AB是⊙O的直徑,弦CD⊥AB,AC=3,BC=1,那么sin∠ABD的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,AB是半圓的直徑,AB=2r,C、D為半圓的三等分點,則圖中陰影部分的面積是(  )

          查看答案和解析>>

          同步練習冊答案