日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          6.點A(-2,$\sqrt{2}$-1)在平面直角坐標系中的( 。
          A.第一象限B.第二象限C.第三象限D.第四象限

          分析 根據第二象限內點的橫坐標小于零,縱坐標大于零,可得答案.

          解答 解:A(-2,$\sqrt{2}$-1)在平面直角坐標系中的第二象限,
          故選:B.

          點評 本題考查了點的坐標,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:填空題

          16.如果方程3x+2=0與方程3x+4k=18的解相同,則k=5.

          查看答案和解析>>

          科目:初中數學 來源: 題型:填空題

          17.已知x2-x=2,則x3-3x2=-4.

          查看答案和解析>>

          科目:初中數學 來源: 題型:解答題

          14.光明中學學生步行到距學校10km的風景區(qū)旅游,學生隊伍的速度是4km/h,學生隊伍出發(fā)1h后,通訊員發(fā)現(xiàn)學生忘了帶做游戲用的道具,通訊員騎自行車以12km/h的速度追趕學生隊伍.通訊員追上學生隊伍用了多長時間?追上學生隊伍時,距離風景區(qū)還有多遠?

          查看答案和解析>>

          科目:初中數學 來源: 題型:解答題

          1.說出下列各式的意義.
          (1)$\frac{2x+3}{a}$
          (2)6(8-a)
          (3)(3x-2y)2

          查看答案和解析>>

          科目:初中數學 來源: 題型:解答題

          5.一苗木基地出售的百合和玫瑰,其單價為:玫瑰4元/株,百合5元/株,如果所購的玫瑰數量大于1200株,那么每株玫瑰還可降價1元.
          (1)一鮮花店采購百合和玫瑰一共1000株,共花去4400元,那么該鮮花店采購百合和玫瑰各幾株?
          (2)一鮮花店采購玫瑰1000株~1500株,百合若干株,恰好花去了9000元.
          ①設采購玫瑰x株,當所購的玫瑰數量小于1200株時,則購百合$\frac{9000-4x}{5}$株; 當所購的玫瑰數量大于1200株時,則購百合$\frac{9000-3x}{5}$株(用x的代數式表示);
          ②如果該花店以玫瑰5元、百合6.5元的價格賣出,問:此鮮花店應如何采購這兩種鮮花才能使獲得的毛利潤最大?
          (注:1000株~1500株,表示大于或等于1000株,且小于或等于1500株;
          毛利潤=鮮花店賣出百合和玫瑰所獲的總金額-購進百合和玫瑰的所需的總金額)

          查看答案和解析>>

          科目:初中數學 來源: 題型:解答題

          12.操作實踐
          (1)操作1:將矩形ABCD沿對角線AC折疊(如圖1),猜想重疊部分是什么圖形?并驗證你的猜想.連結BE與AC有什么位置關系?
          (2)操作2:折疊矩形ABCD,讓點B落在對角線AC上(如圖2),若AD=4,AB=3,請求出線段CE的長度.

          查看答案和解析>>

          科目:初中數學 來源: 題型:選擇題

          9.如圖,點O是矩形ABCD的中心,E是AB上的點,沿CE折疊后,點B恰好與點O重合.若BC=3,則矩形ABCD的面積為( 。
          A.6$\sqrt{3}$B.12$\sqrt{3}$C.$\frac{9}{2}$$\sqrt{3}$D.9$\sqrt{3}$

          查看答案和解析>>

          科目:初中數學 來源: 題型:選擇題

          10.若|m-3|+(n+2)2=0,則3m+2n的值為( 。
          A.-4B.-1C.5D.13

          查看答案和解析>>

          同步練習冊答案