日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•漳州)二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論正確的是( 。
          分析:根據(jù)二次函數(shù)的圖象與系數(shù)的關系對各選項進行逐一分析即可.
          解答:解:A、∵拋物線的開口向上,∴a>0,故本選項錯誤;
          B、∵拋物線與x軸有兩個不同的交點,∴△=b2-4ac>0,故本選項錯誤;
          C、由函數(shù)圖象可知,當-1<x<3時,y<0,故本選項錯誤;
          D、∵拋物線與x軸的兩個交點分別是(-1,0),(3,0),∴對稱軸x=-
          b
          2a
          =
          -1+3
          2
          =1,故本選項正確.
          故選D.
          點評:本題考查的是二次函數(shù)的圖象與系數(shù)的關系,能利用數(shù)形結合求解是解答此題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2013•漳州)(1)問題探究
          數(shù)學課上,李老師給出以下命題,要求加以證明.
          如圖1,在△ABC中,M為BC的中點,且MA=
          12
          BC,求證∠BAC=90°.
          同學們經(jīng)過思考、討論、交流,得到以下證明思路:
          思路一 直接利用等腰三角形性質和三角形內角和定理…
          思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…
          思路三 以BC為直徑作圓,利用圓的知識…
          思路四…
          請選擇一種方法寫出完整的證明過程;
          (2)結論應用
          李老師要求同學們很好地理解(1)中命題的條件和結論,并直接運用(1)命題的結論完成以下兩道題:
          ①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙0的切線;
          ②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

          查看答案和解析>>

          同步練習冊答案