日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 二次函數(shù)的圖象與軸相交于點(diǎn)(-1,0)和(3,0),則它的對稱軸是直線(    )。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸相交點(diǎn)C(0,
          3
          ).
          (1)求該二次函數(shù)解析式;
          (2)連接AC、BC,點(diǎn)M、N分別是線段AB、BC上的動(dòng)點(diǎn),且始終滿足BM=BN,連接MN.
          ①將△BMN沿MN翻折,B點(diǎn)能恰好落在AC邊上的P處嗎?若能,請判斷四邊形BMPN的形狀并求出PN的長;若不能,請說明理由.   
          ②將△BMN沿MN翻折,B點(diǎn)能恰好落在此拋物線上嗎?若能,請直接寫出此時(shí)B點(diǎn)關(guān)于MN的對稱點(diǎn)Q的坐標(biāo);若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•相城區(qū)模擬)如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作CD⊥y軸交該拋物線于點(diǎn)D,且AB=2,CD=4.
          (1)該拋物線的對稱軸為
          直線x=2
          直線x=2
          ,B點(diǎn)坐標(biāo)為(
          3,0
          3,0
          ),CO=
          3
          3
          ;
          (2)若P為線段OC上的一個(gè)動(dòng)點(diǎn),四邊形PBQD是平行四邊形,連接PQ.試探究:
          ①是否存在這樣的點(diǎn)P,使得PQ2=PB2+PD2?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
          ②當(dāng)PQ長度最小時(shí),求出此時(shí)點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          (2013•南京二模)閱讀材料,回答問題:
          如果二次函數(shù)y1的圖象的頂點(diǎn)在二次函數(shù)y2的圖象上,同時(shí)二次函數(shù)y2的圖象的頂點(diǎn)在二次函數(shù)y1的圖象上,那么我們稱y1的圖象與y2的圖象相伴隨.
          例如:y=(x+1)2+2圖象的頂點(diǎn)(-1,2)在y=-(x+3)2+6的圖象上,同時(shí)y=-(x+3)2+6圖象的頂點(diǎn)
          (-3,6)也在y=(x+1)2+2的圖象上,這時(shí)我們稱這兩個(gè)二次函數(shù)的圖象相伴隨.

          (1)說明二次函數(shù)y=x2-2x-3的圖象與二次函數(shù)y=-x2+4x-7的圖象相伴隨;
          (2)如圖,已知二次函數(shù)y1=
          14
          (x+1)2-2圖象的頂點(diǎn)為M,點(diǎn)P是x軸上一個(gè)動(dòng)點(diǎn),將二次函數(shù)y1的圖象繞點(diǎn)P旋轉(zhuǎn)180°得到一個(gè)新的二次函數(shù)y2的圖象,且旋轉(zhuǎn)前后的兩個(gè)函數(shù)圖象相伴隨,y2的圖象的頂點(diǎn)為N.
          ①求二次函數(shù)y2的關(guān)系式;
          ②以MN為斜邊作等腰直角△MNQ,問y軸上是否存在滿足要求的點(diǎn)Q?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          閱讀材料,回答問題:
          如果二次函數(shù)y1的圖象的頂點(diǎn)在二次函數(shù)y2的圖象上,同時(shí)二次函數(shù)y2的圖象的頂點(diǎn)在二次函數(shù)y1的圖象上,那么我們稱y1的圖象與y2的圖象相伴隨.
          例如:y=(x+1)2+2圖象的頂點(diǎn)(-1,2)在y=-(x+3)2+6的圖象上,同時(shí)y=-(x+3)2+6圖象的頂點(diǎn)
          (-3,6)也在y=(x+1)2+2的圖象上,這時(shí)我們稱這兩個(gè)二次函數(shù)的圖象相伴隨.

          (1)說明二次函數(shù)y=x2-2x-3的圖象與二次函數(shù)y=-x2+4x-7的圖象相伴隨;
          (2)如圖,已知二次函數(shù)y1=數(shù)學(xué)公式(x+1)2-2圖象的頂點(diǎn)為M,點(diǎn)P是x軸上一個(gè)動(dòng)點(diǎn),將二次函數(shù)y1的圖象繞點(diǎn)P旋轉(zhuǎn)180°得到一個(gè)新的二次函數(shù)y2的圖象,且旋轉(zhuǎn)前后的兩個(gè)函數(shù)圖象相伴隨,y2的圖象的頂點(diǎn)為N.
          ①求二次函數(shù)y2的關(guān)系式;
          ②以MN為斜邊作等腰直角△MNQ,問y軸上是否存在滿足要求的點(diǎn)Q?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年河南省中招考試說明解密預(yù)測數(shù)學(xué)試卷(一)(解析版) 題型:解答題

          如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸相交點(diǎn)C(0,).
          (1)求該二次函數(shù)解析式;
          (2)連接AC、BC,點(diǎn)M、N分別是線段AB、BC上的動(dòng)點(diǎn),且始終滿足BM=BN,連接MN.
          ①將△BMN沿MN翻折,B點(diǎn)能恰好落在AC邊上的P處嗎?若能,請判斷四邊形BMPN的形狀并求出PN的長;若不能,請說明理由.   
          ②將△BMN沿MN翻折,B點(diǎn)能恰好落在此拋物線上嗎?若能,請直接寫出此時(shí)B點(diǎn)關(guān)于MN的對稱點(diǎn)Q的坐標(biāo);若不能,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案