日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知矩形紙片ABCD,AD=2,AB=4,將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB、CD交于點(diǎn)G、F,AE與FG交于點(diǎn)O.
          (1)如圖1,求證:A、G、E、F四點(diǎn)圍成的四邊形是菱形;
          (2)如圖2,點(diǎn)N是線段BC的中點(diǎn),且ON=OD,求折痕FG的長(zhǎng).
          分析:(1)根據(jù)折疊的性質(zhì)判斷出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,從而判斷出EF=AG,得出四邊形AGEF是平行四邊形,繼而結(jié)合AG=GE,可得出結(jié)論.
          (2)連接ON,得出ON是梯形ABCE的中位線,在RT△ADE中,利用勾股定理可解出x,繼而可得出折痕FG的長(zhǎng)度.
          解答:(1)證明:由折疊的性質(zhì)可得,GA=GE,∠AGF=∠EGF,
          ∵DC∥AB,
          ∴∠EFG=∠AGF,
          ∴∠EFG=∠EGF,
          ∴EF=EG=AG,
          ∴四邊形AGEF是平行四邊形(EF∥AG,EF=AG),
          又∵AG=GE,
          ∴四邊形AGEF是菱形.

          (2)解:連接ON,
          ∵O,N分別是AE,CB的中點(diǎn),
          故ON是梯形ABCE的中位線,
          設(shè)CE=x,則ED=4-x,2ON=CE+AB=x+4,
          在Rt△AED中,AE=2OE=2ON=x+4,
          AD2+DE2=AE2,
          ∴22+(4-x)2=(4+x)2
          得x=
          1
          4
          ,
          OE=
          1
          2
          22+(
          15
          4
          )
          2
          =
          17
          8
          ,
          ∵△FEO∽△AED,
          OE
          DE
          =
          OF
          AD
          ,
          解得:FO=
          17
          15
          ,
          ∴FG=2FO=
          34
          15

          故折痕FG的長(zhǎng)是
          34
          15
          點(diǎn)評(píng):此題考查了翻折變換的知識(shí),涉及了菱形的判定、含30°角的直角三角形的性質(zhì),關(guān)鍵在于得出△FEO∽△AED,求出
          OE
          DE
          =
          OF
          AD
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          7、如圖,已知矩形紙片ABCD,點(diǎn)E是AB的中點(diǎn),點(diǎn)G是BC上的一點(diǎn),∠BEG=60°.現(xiàn)沿直線EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH,則與∠BEG相等的角的個(gè)數(shù)為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知矩形紙片ABCD,AD=2,AB=
          3
          ,以A為圓心,AD長(zhǎng)為半徑畫弧交BC于點(diǎn)E,將扇形AED剪下圍成一個(gè)圓錐,則該圓錐的底面半徑為( 。
          A、1
          B、
          1
          2
          C、
          1
          3
          D、
          1
          4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知矩形紙片ABCD中,AB=3,BC=6,E在矩形ABCD的邊AD上,點(diǎn)F在矩形ABCD的邊BC上,且BF=5,把矩形紙片ABCD沿EF折疊,BF的對(duì)應(yīng)線段FB′交邊AD于點(diǎn)G.

          (1)判斷△EFG是何種特殊三角形,并證明你的結(jié)論.
          (2)在折疊過程中,不重疊部分(陰影圖形)的周長(zhǎng)之和p會(huì)發(fā)生變化嗎?若不變化,請(qǐng)求出p的值;若變化,請(qǐng)說明理由.
          (3)當(dāng)△EFG是銳角三角形時(shí),求AE的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•南寧)如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.
          (1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;
          (2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);
          (3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•安慶二模)如圖,已知矩形紙片ABCD,E是AB邊的中點(diǎn),點(diǎn)G為BC邊上的一點(diǎn),現(xiàn)沿EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH.若AB=EG,則與∠BEG相等的角的個(gè)數(shù)為( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案