日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】歷史上對勾股定理的一種證法采用了如圖所示圖形,其中兩個全等的直角三角形邊AE,EB在一條直線上.證明中用到的面積相等關(guān)系是 ( )

          A. SEDA=SCEB

          B. SEDA +SCEB=SCDB

          C. S四邊形CDAE= S四邊形CDEB

          D. SEDA+SCDE+SCEB= S四邊形ABCD

          【答案】D

          【解析】

          用三角形的面積和、梯形的面積來表示這個圖形的面積,從而證明勾股定理.

          ∵由S△EDA+S△CDE+S△CEB=S四邊形ABCD
          可知ab+c2+ab=(a+b)2,
          ∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2
          ∴證明中用到的面積相等關(guān)系是:S△EDA+S△CDE+S△CEB=S四邊形ABCD
          故選D.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在“愛我中華”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:甲:8,7,98,8;乙:7,9,6,9,9,則下列說法中錯誤的是( 。

          A. 甲得分的方差比乙得分的方差小B. 甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

          C. 甲、乙得分的平均數(shù)都是8D. 甲得分的中位數(shù)是9,乙得分的中位數(shù)是6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在同一直角坐標(biāo)系中,拋物線y=ax2﹣2x﹣3與拋物線y=x2+mx+n關(guān)于y軸對稱,C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).

          (1)求拋物線C1,C2的函數(shù)表達(dá)式;

          (2)求A、B兩點(diǎn)的坐標(biāo);

          (3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.

          (1)求證:AD=AF;

          (2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)ykx4k0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)yx0)的圖象交于點(diǎn)B6,b).

          1b__________;k__________

          2)點(diǎn)C是直線AB上的動點(diǎn)(與點(diǎn)A,B不重合),過點(diǎn)C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點(diǎn)D,當(dāng)點(diǎn)C的橫坐標(biāo)為3時,得OCD,現(xiàn)將OCD沿射線AB方向平移一定的距離(如圖),得到OCD,若點(diǎn)O的對應(yīng)點(diǎn)O落在該反比例函數(shù)圖象上,求點(diǎn)O,D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)A. B在雙曲線y= (x>0)上,ACx軸于C,BDy軸于點(diǎn)DACBD交于點(diǎn)P,PAC的中點(diǎn).

          (1)設(shè)A的橫坐標(biāo)為m,試用mk表示B的坐標(biāo).

          (2)試判斷四邊形ABCD的形狀,并說明理由.

          (3)若△ABP的面積為3,求該雙曲線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:O是坐標(biāo)原點(diǎn),P(m,n(m0)是函數(shù)y (k0)上的點(diǎn),過點(diǎn)P作直線PAOP于P,直線PAx軸的正半軸交于點(diǎn)A(a,0(am). 設(shè)OPA的面積為s,且s=1.

          (1)當(dāng)n=1時,求點(diǎn)A的坐標(biāo);

          (2)若OP=AP,求k的值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】興趣小組的同學(xué)要測量樹的高度.在陽光下,一名同學(xué)測得一根 長為 1 米的竹竿的影長為 0.4 米,同時另一名同學(xué)測量樹的高度時, 發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺 階水平面上,測得此影子長為 0.2 米,一級臺階高為 0.3 米,如圖 所示,若此時落在地面上的影長為 4.4 米,則樹高為( )

          A.11.8 B.11.75

          C.12.3 D.12.25

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】成都市電力公司為了鼓勵居民節(jié)約用電,采用分段計費(fèi)的方法計算電費(fèi);第一檔:每月用電不超過180度時,按每度0.5元計費(fèi);第二檔:每月用電超過180度但不足280度時,其中超過部分按每度0.6元計費(fèi);第三檔:280度以上時,超出部分按每度0.8元計費(fèi).

          1)若李明家1月份用電160度應(yīng)交電費(fèi)  元,2月份用電200度應(yīng)交電費(fèi)  元.

          2)若設(shè)用電量為x度,應(yīng)交電費(fèi)為y元,請求出這三檔中yx的關(guān)系式.并利用關(guān)系式求交電費(fèi)108元時的用電量.

          查看答案和解析>>

          同步練習(xí)冊答案