日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB為半圓O的直徑,ADBC分別與⊙O相切于點A,B,CD與⊙O相切于點E,ADCD相交于D,BCCD相交于C,連接OD、OEOC,已知AD2BC4,對于下列結(jié)論:①AD+BCCD:②∠DOC90°;③S梯形ABCDCDOA:④OA2.其中結(jié)論正確的有_____.(請把正確的結(jié)論的序號填在橫線上)

          【答案】①②

          【解析】

          連接OE,利用切線長定理得到AD=EDCE=CB,且ODOC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,進而確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,可求OA的長,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,由梯形的面積公式可得S梯形ABCDABAD+BC)=ABCD,即可得到正確的選項;

          解:∵AD與圓O相切,DC與圓O相切,BC與圓O相切,

          ∴∠DAO=∠DEO=∠OBC90°DADE2,CECB4,

          ADBC,

          CDDE+ECAD+BC,選項①正確;

          RtADORtEDO中,

          ,

          RtADORtEDOHL),

          ∴∠AOD=∠EOD,

          同理RtCEORtCBO

          ∴∠EOC=∠BOC,

          又∠AOD+DOE+EOC+COB180°,

          2(∠DOE+EOC)=180°,即∠DOC90°,選項②正確;

          ∴∠DOC=∠DEO90°,又∠EDO=∠ODC,

          ∴△EDO∽△ODC,

          ,即OE2DEEC8,

          OE,

          OAOE,選項④錯誤;

          S梯形ABCDABAD+BC)=ABCD,選項③錯誤;

          則正確的選項有①②.

          故答案為:①②.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)yax2bx+cyx的部分對立值如表:

          x

          1

          0

          1

          3

          y

          3

          1

          3

          1

          下列結(jié)論①拋物線的開口向下:②其圖象的對稱軸為x1:③當(dāng)x1時.函數(shù)值yx的增大而增大,④方程ax2+bx+c0有一個根大于4.其中正確的結(jié)論有_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,BC這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.

          1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;

          2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】AB是⊙O的直徑,C點在⊙O上,FAC的中點,OF的延長線交⊙O于點D,點EAB的延長線上,∠A=∠BCE

          1)求證:CE是⊙O的切線;

          2)若BCBE,判定四邊形OBCD的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點D,ACA1C1、BC1分別交于點E. F.

          (1)求證:△BCF≌△BA1D.

          (2)當(dāng)∠C=α度時,判定四邊形A1BCE的形狀并說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx﹣1a≠0)經(jīng)過A﹣1,0),B2,0)兩點,與y軸交于點C

          1)求拋物線的解析式及頂點D的坐標;

          2)點P在拋物線的對稱軸上,當(dāng)ACP的周長最小時,求出點P的坐標;

          3)若點M為拋物線第四象限內(nèi)一點,連接BC、CM、BM,求當(dāng)BCM的面積最大時點M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,直線MN經(jīng)過點ABEMN于點E,CFMN于點F,DGMN于點G.

          (1)當(dāng)MN繞點A旋轉(zhuǎn)到圖①位置時,求證:BE +CF =DG; .

          (2)當(dāng)MN繞點A旋轉(zhuǎn)到圖②和圖③位置時,線段BE,CFDG之間又有怎樣的數(shù)量關(guān)系?

          請寫出你的猜想,不需要證明;

          (3)(1)(2)的條件下,若CD =2AE =6,EF =43,則CF=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】賓館有50間房供游客居住,當(dāng)每間房每天定價為180元時,賓館會住滿;當(dāng)每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出20元的費用.當(dāng)房價定為多少元時,賓館當(dāng)天的利潤為10890元?設(shè)房價比定價180元增加x元,則有( 。

          A.x20)(50)=10890B.x50)﹣50×2010890

          C.180+x20)(50)=10890D.x+180)(50)﹣50×2010890

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明想利用所學(xué)數(shù)學(xué)知識測量學(xué)校旗桿高度,如圖,旗桿的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小明拿起繩子末端,后退至E處,拉直繩子,此時繩子末端D距離地面1.6m且繩子與水平方向成45°角.

          (1)填空:AD_____AC(填”,“”,“=”).

          (2)求旗桿AB的高度.

          (參考數(shù)據(jù): 1.41, 1.73,結(jié)果精確到0.1m).

          查看答案和解析>>

          同步練習(xí)冊答案