日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使ADE=30°.

          (1)求證:ABD∽△DCE;

          (2)設BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

          (3)當ADE是等腰三角形時,求AE的長.

          【答案】(1)證明見解析(2)y=x+2(0x2(3)ADE是等腰三角形時,AE=4﹣2

          【解析】

          試題分析:(1)根據(jù)兩角相等證明:ABD∽△DCE;

          (2)如圖1,作高AF,根據(jù)直角三角形30°的性質(zhì)求AF的長,根據(jù)勾股定理求BF的長,則可得BC的長,根據(jù)(1)中的相似列比例式可得函數(shù)關(guān)系式,并確定取值;

          (3)分三種情況進行討論:當AD=DE時;當AE=ED時;當AD=AE時,討論即可得到答案.

          試題解析:(1)∵△ABC是等腰三角形,且BAC=120°,

          ∴∠ABD=ACB=30°,

          ∴∠ABD=ADE=30°,

          ∵∠ADC=ADE+EDC=ABD+DAB,

          ∴∠EDC=DAB,

          ∴△ABD∽△DCE;

          (2)如圖1,AB=AC=2,BAC=120°,

          過A作AFBC于F,

          ∴∠AFB=90°,

          AB=2,ABF=30°,

          AF=AB=1,

          BF=,

          BC=2BF=2

          則DC=2﹣x,EC=2﹣y,

          ∵△ABD∽△DCE,

          ,

          化簡得:y=x+2(0x2);

          (3)當AD=DE時,如圖2,

          由(1)可知:此時ABD∽△DCE,

          則AB=CD,即2=2﹣x,

          x=2﹣2,代入y=x+2,

          解得:y=4﹣2,即AE=4﹣2,

          當AE=ED時,如圖3,

          EAD=EDA=30°,AED=120°,

          ∴∠DEC=60°,EDC=90°,

          則ED=EC,即y=(2﹣y),

          解得:y=,即AE=,

          當AD=AE時,

          AED=EDA=30°,EAD=120°,

          此時點D與點B重合,不符合題意,此情況不存在,

          ADE是等腰三角形時,AE=4﹣2

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過點,頂點為點,點為拋物線上的一個動點,是過點且垂直于軸的直線,過,垂足為,連接

          求拋物線的解析式,并寫出其頂點的坐標;

          ①當點運動到點處時,計算:________,________,由此發(fā)現(xiàn),________(填“”、“”或“”);

          ②當點在拋物線上運動時,猜想有什么數(shù)量關(guān)系,并證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達B處,測得海島在南偏西37°的方向,求小島到海岸線的距離

          (參考數(shù)據(jù):tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】ABC中,∠ABC45°F是高AD與高BE的交點.

          1)求證:ADC≌△BDF

          2)連接CF,若CD4,求CF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC

          (1)求點A、C的坐標;

          (2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

          (3)在坐標平面內(nèi),是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D

          (1)求作∠ABC的平分線,分別交AD,ACE,F兩點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

          (2)證明:AE=AF

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在△ABC中,∠ACB=90°,經(jīng)過點C的⊙O與斜邊AB相切于點P.

          (1)如圖①,當點OAC上時,試說明2ACP=B;

          (2)如圖②,AC=8,BC=6,當點O在△ABC外部時,求CP長的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某城市為創(chuàng)建國家衛(wèi)生城市,需要購買甲、乙兩種類型的分類垃圾桶(如圖所示),據(jù)調(diào)查該城市的A、B、C三個社區(qū)積極響應號并購買,具體購買的數(shù)和總價如表所示.

          社區(qū)

          甲型垃圾桶

          乙型垃圾桶

          總價

          A

          10

          8

          3320

          B

          5

          9

          2860

          C

          a

          b

          2820

          1)運用本學期所學知識,列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價每套分別是多少元?

          2)按要求各個社區(qū)兩種類型的垃圾桶都要有,則a   

          查看答案和解析>>

          同步練習冊答案