日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖1,直線x+6y軸交于點A,與x軸交于點D,直線ABx軸于點B,將AOB沿直線AB折疊,點O恰好落在直線AD上的點C處.

          1)求OB的長;

          2)如圖2,FG是直線AB上的兩點,若DFG是以FG為斜邊的等腰直角三角形,求點F的坐標;

          3)如圖3,點P是直線AB上一點,點Q是直線AD上一點,且PQ均在第四象限,點Ex軸上一點,若四邊形PQDE為菱形,求點E的坐標.

          【答案】1OB=3;(2F6-6);(3E-20).

          【解析】

          1)設BC=OB=x,則BD=8-x,在RtBCD中,根據,構建方程即可解決問題;

          2)作GMx軸于MFNx軸于N,由DMG≌△FNDAAS),推出GM=DN,DM=FN,設GM=DM=m,DM=FN=n,根據G、F在直線AB上,構建方程組即可解決問題;

          3)如圖,設Q,因為PQx軸,且點P在直線y=-2x+6上,推出P,PQ=,作QHx軸于H.由勾股定理可知:QHDHDQ=345,構建方程即可解決問題.

          解:(1)對于直線,令x0,得到y6,可得A0,6),

          y0,得到x8,可得D80),

          ACAO6,OD8AD,

          BCOBx,則BD,

          RtBCD中,∵BC2+CD2BD2

          x3,

          OB=3

          2)設直線AB的解析式為ykx+6k≠0),

          OB=3,即B3,0),

          B30)代入ykx+6得,

          3k+60,

          直線AB的解析式為y-2x+6,

          GMx軸于M,FNx軸于N,

          DFG是等腰直角三角形,

          DGFD,∠GDF=90°,

          DMGFND中,

          GMDNDMFN,設GMDNm,DMFNn

          G、F在直線AB上,

          則:,

          解得:

          ON=OD-DN=8-2=6,

          F6,-6).

          3)如圖,設Qa,),

          PQ//x軸,且點P在直線上,

          P),

          PQ,作QHx軸于H

          ,

          ,

          由勾股定理可知:QHDHDQ345

          四邊形PQDE為菱形,

          Q16-6),P6,-6),

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】用各種盛水容器可以制作精致的家用流水景觀(如圖1).

          科學原理:如圖2,始終盛滿水的圓體水桶水面離地面的高度為H(單位:m),如果在離水面豎直距離為h(單校:cm)的地方開大小合適的小孔,那么從小孔射出水的射程(水流落地點離小孔的水平距離)s(單位:cm)與h的關系為s2=4hH—h).

          應用思考:現用高度為20cm的圓柱體望料水瓶做相關研究,水瓶直立地面,通過連注水保證它始終盛滿水,在離水面豎直距高h cm處開一個小孔.

          1)寫出s2h的關系式;并求出當h為何值時,射程s有最大值,最大射程是多少?

          2)在側面開兩個小孔,這兩個小孔離水面的豎直距離分別為a,b,要使兩孔射出水的射程相同,求a,b之間的關系式;

          3)如果想通過墊高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔離水面的豎直距離.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】已知在平面直角坐標系xOy中,直線y2x+2和直線yx+2分別交x軸于點A和點B.則下列直線中,與x軸的交點不在線段AB上的直線是( 。

          A.yx+2B.yx+2C.y4x+2D.yx+2

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某校計劃組織學生參加學校書法、攝影、籃球、乒乓球四個課外興趣小組,要求每人必須參加并且只能選擇其中的一個小組,為了了解學生對四個課外小組的選擇情況,學校從全體學生中隨機抽取部分學生進行問卷調查,并把調查結果制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據給出的信息解答下列問題:

          1)求該校參加這次問卷調查的學生人數,并補全條形統(tǒng)計圖(畫圖后請標注相應的數據);

          2m    n    ;

          3)若該校共有2000名學生,試估計該校選擇乒乓球課外興趣小組的學生有多少人?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】解不等式組:請結合題意填空,完成本題的解答:

          1)解不等式①,得:  ;

          2)解不等式②得:  ;

          3)把不等式①和②的解集在數軸上表示出來;

          4)原不等式組的解集為:  

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,DAC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=ABC

          1)求證:PA是⊙O的切線;

          2)證明:;

          3)若BC=8tanAFP=,求DE的長.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在6×4的方格紙ABCD中,請按要求畫格點線段(端點在格點上),且線段的端點均不與點A,B,C,D重合.

          1)在圖1中畫格點線段EF,GH各一條,使點EF,G,H分別落在邊AB,BCCD,DA上,且EFGH,EF不平行GH

          2)在圖2中畫格點線段MN,PQ各一條,使點M,N,P,Q分別落在邊ABBC,CD,DA上,且PQMN

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】構建幾何圖形解決代數問題是“數形結合”思想的重要性,在計算tan15°時,如圖.在RtACB中,∠C90°,∠ABC30°,延長CB使BDAB,連接AD,得∠D15°,所以tan15°.類比這種方法,計算tan22.5°的值為(  )

          A.B.1C.D.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在矩形ABCD中,EAB上一點,將ADE沿DE翻折,點A恰好落在BC上,記為A1,折痕為DE.再將∠B沿EA1向內翻折,點B恰好落在DE上,記為B1.若AD1,則AB的長為_____

          查看答案和解析>>

          同步練習冊答案