日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線y=k1x+b(k1≠0)與雙曲線y=數(shù)學公式(k2≠0)相交于A(1,m)、B(-2,-1)兩點.
          (1)求直線和雙曲線的解析式.
          (2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關系式.

          解:(1)∵雙曲線y=經(jīng)過點B(-2,-1),
          ∴k2=2,
          ∴雙曲線的解析式為:y=
          ∵點A(1,m)在雙曲線y=上,
          ∴m=2,即A(1,2),
          由點A(1,2),B(-2,-1)在直線y=k1x+b上,得,
          解得:,
          ∴直線的解析式為:y=x+1;

          (2)∵A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3
          ∴A1與A2在第三象限,A3在第一象限,即y1<0,y2<0,y3>0,
          則y2<y1<y3
          分析:(1)將B坐標代入雙曲線解析式求出k2的值,確定出反比例解析式,將A坐標代入反比例解析式求出m的值,確定出A的坐標,將A與B坐標代入直線解析式求出k1與b的值,即可確定出直線解析式;
          (2)先根據(jù)橫坐標的正負分象限,再根據(jù)反比例函數(shù)的增減性判斷即可.
          點評:此題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用了待定系數(shù)法,熟練掌握待定系數(shù)法是解本題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          11、如圖,直線y1=k1x+a與y2=k2x+b的交點坐標為(1,2),則使y1<y2的x的取值范圍為
          x<1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          9、如圖,直線y1=k1x+a與y2=k3x+b的交點坐標為(1,2),則使y1<y2的x的取值范圍為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,直線y=k1x與雙曲線y=
          k2x
          相交于點P、Q.若點P的坐標為(1,2),則點Q的坐標為
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•阜寧縣一模)如圖,直線y=k1x-b與雙曲線y=
          k2
          x
          相交于M、N點,其橫坐標分別為1和3,則不等式k1x>
          k2
          x
          -b
          的解集是
          x<0或-3<x<-1
          x<0或-3<x<-1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•甘井子區(qū)一模)如圖,直線y=k1x+b與雙曲線y=
          k2
          x
          相交于A(m,2),B(-2,-1)兩點.當x>0時,不等式k1x+b>
          k2
          x
          的解集為
          x>1
          x>1

          查看答案和解析>>

          同步練習冊答案