日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,ABAC10,點D是邊BC上一動點(不與B、C重合),∠ADE=∠Bα,DEAC于點E,且cosα,下列結(jié)論:①ADE∽△ACD;②當(dāng)BD6時,ABDDCE全等;③DCE為直角三角形時,BD8;④0CE≤6.4.其中正確的結(jié)論是_________.(把你認(rèn)為正確結(jié)論的序號都填上)

          【答案】①②④

          【解析】

          ①根據(jù)有兩組對應(yīng)角相等的三角形相似即可證明;②由BD6,則DC10,然后根據(jù)有兩組對應(yīng)角相等且夾邊也相等的三角形全等,即可證得;③分兩種情況討論,通過三角形相似即可求得;④依據(jù)相似三角形對應(yīng)邊成比例即可求得.

          解:①∵ABAC,

          ∴∠B=∠C,

          又∵∠ADE=∠B

          ∴∠ADE=∠C,

          ∴△ADE∽△ACD,故①正確;

          ②作AGBCG,

          ABAC10,∠ADE=∠Bα,cosα,

          BGABcosB,

          BC2BG2ABcosB2×10×16,

          BD6,

          DC10,

          ABDC

          在△ABD與△DCE,

          ∴△ABD≌△DCEASA),故②正確;

          ③當(dāng)∠AED90°時,由①可知:△ADE∽△ACD,

          ∴∠ADC=∠AED,

          ∵∠AED90°

          ∴∠ADC90°,即ADBC,

          ABAC,

          BDCD,

          ∴∠ADE=∠Bαcosα,AB10BD8,

          當(dāng)∠CDE90°時,易△CDE∽△BAD,

          ∵∠CDE90°,

          ∴∠BAD90°,

          ∵∠Bαcosα,AB10,

          cosB,

          BD,故③錯誤;

          ④易證得△CDE∽△BAD,由②可知BC16

          設(shè)BDy,CEx,

          ,

          整理得:y216y646410x

          即(y826410x,

          0x≤6.4,故④正確;

          故答案為:①②④.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明為探究函數(shù)的圖象和性質(zhì),需要畫出函數(shù)圖象,列表如下:

          ……

          ……

          ……

          ……

          根據(jù)上表數(shù)據(jù),在平面直角坐標(biāo)系中描點,畫出函數(shù)圖象,如圖如示,小明畫出了圖象的一部分.

          1)請你幫小明畫出完整的的圖象;

          2)觀察函數(shù)圖象,請寫出這個函數(shù)的兩條性質(zhì):

          性質(zhì)一:

          性質(zhì)二:

          3)利用上述圖象,探究函數(shù)圖象與直線的關(guān)系;

          ①當(dāng) 時, 直線與函數(shù)在第一象限的圖象有一個交點,則的坐標(biāo)是 ;

          當(dāng)為何值時,討論函數(shù)的圖象與直線的交點個數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,EAB上的一點,△ADE△BCE都是等邊三角形,點PQ、M、N分別為AB、BCCD、DA的中點,則四邊形MNPQ是( )

          A.等腰梯形B.矩形C.菱形D.正方形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的交點為,與軸的交點分別為,,且,直線軸,在軸上有一動點過點作平行于軸的直線與拋物線、直線的交點分別為、

          求拋物線的解析式;

          當(dāng)時,求面積的最大值;

          當(dāng)時,是否存在點,使以、、為頂點的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗,對函數(shù)y 進(jìn)行了探究,下面是他的探究過程:

          1)已知x=-3 0;x1 0,化簡:

          ①當(dāng)x<-3時,y

          ②當(dāng)-3≤x≤1時,y

          ③當(dāng)x1時,y

          2)在平面直角坐標(biāo)系中畫出y 的圖像,根據(jù)圖像,寫出該函數(shù)的一條性質(zhì).

          3)根據(jù)上面的探究解決,下面問題:

          已知A(a,0)x軸上一動點,B(1,0)C(3,0),則ABAC的最小值是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】春秋旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出了如下收費標(biāo)準(zhǔn):

          某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面上,邊長為的正方形和短邊長為的矩形幾何中心重合,如圖①,當(dāng)正方形和矩形都水平放置時,容易求出重疊面積

          甲、乙、丙三位同學(xué)分別給出了兩個圖形不同的重疊方式;

          甲:矩形繞著幾何中心旋轉(zhuǎn),從圖②到圖③的過程中,重疊面積大小不變.

          乙:如圖④,矩形繞著幾何中心繼續(xù)旋轉(zhuǎn),矩形的兩條長邊與正方形的對角線平行時,此時的重疊面積大于圖③的重疊面積.

          丙:如圖⑤,將圖④中的矩形向左上方平移,使矩形的一條長邊恰好經(jīng)過正方形的對角線,此時的重疊面積是個圖形中最小的.

          下列說法正確的是(

          A.甲、乙、丙都對B.只有乙對C.只有甲不對D.甲、乙、丙都不對

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線軸交于A,B兩點(點A在點B左側(cè))

          1)求拋物線的頂點坐標(biāo)(用含的代數(shù)式表示);

          2)求線段AB的長;

          3)拋物線與軸交于點C(點C不與原點重合),若的面積始終小于的面積,求的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)解析式為ymx22mx+m,二次函數(shù)與x軸交于A、B兩點(BA右側(cè)),與y軸交于C點,二次函數(shù)頂點為M.已知OMB90°

          求頂點坐標(biāo).

          求二次函數(shù)解析式.

          ③N為線段BM中點,在二次函數(shù)的對稱軸上是否存在一點P,使得∠PON60°,若存在求出點P坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案