日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•山西)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.

          (1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
          (2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
          (3)在(2)的情況下,求ED的長.
          【答案】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到對應(yīng)邊相等和對應(yīng)角相等,從而得到全等三角形,根據(jù)全等三角形的性質(zhì)進行證明;
          (2)在(1)的基礎(chǔ)上,易發(fā)現(xiàn)該四邊形的四條邊相等,從而證明是菱形;
          (3)根據(jù)菱形的性質(zhì)和解直角三角形的知識以及等腰三角形的性質(zhì)求解.
          解答:解:(1)EA1=FC.
          證明:(證法一)∵AB=BC,
          ∴∠A=∠C.
          由旋轉(zhuǎn)可知,AB=BC1,∠A=∠C1,∠ABE=∠C1BF,
          ∴△ABE≌△C1BF.
          ∴BE=BF,又∵BA1=BC,
          ∴BA1-BE=BC-BF.即EA1=FC.
          (證法二)∵AB=BC,∴∠A=∠C.
          由旋轉(zhuǎn)可知,∠A1=∠C,A1B=CB,而∠EBC=∠FBA1
          ∴△A1BF≌△CBE.
          ∴BE=BF,∴BA1-BE=BC-BF,
          即EA1=FC.

          (2)四邊形BC1DA是菱形.
          證明:∵∠A1=∠ABA1=30°,
          ∴A1C1∥AB,同理AC∥BC1
          ∴四邊形BC1DA是平行四邊形.
          又∵AB=BC1
          ∴四邊形BC1DA是菱形.

          (3)(解法一)過點E作EG⊥AB于點G,則AG=BG=1.
          在Rt△AEG中,AE=
          由(2)知四邊形BC1DA是菱形,
          ∴AD=AB=2,
          ∴ED=AD-AE=2-
          (解法二)∵∠ABC=120°,∠ABE=30°,∴∠EBC=90°.
          在Rt△EBC中,BE=BC•tanC=2×tan30°=
          ∴EA1=BA1-BE=2-
          ∵A1C1∥AB,
          ∴∠A1DE=∠A.
          ∴∠A1DE=∠A1
          ∴ED=EA1=2-
          點評:本題主要考查旋轉(zhuǎn)、全等三角形、特殊平行四邊形、解直角三角形等知識.解決本題的關(guān)鍵是結(jié)合圖形,大膽猜想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

          (2009•山西)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.

          (1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
          (2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
          (3)在(2)的情況下,求ED的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(04)(解析版) 題型:解答題

          (2009•山西)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.

          (1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
          (2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
          (3)在(2)的情況下,求ED的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《三角形》(18)(解析版) 題型:解答題

          (2009•山西)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.

          (1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
          (2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
          (3)在(2)的情況下,求ED的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年廣東省初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)押題卷(解析版) 題型:解答題

          (2009•山西)在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.

          (1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
          (2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
          (3)在(2)的情況下,求ED的長.

          查看答案和解析>>

          同步練習(xí)冊答案