日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知2+是關(guān)于x的方程x2-4x+c=0的一個(gè)根.則c的值是________,另一個(gè)根為________.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知一組正數(shù)x1,x2,x3,x4,x5的方差為:S2=
          1
          5
          (x12+x22+x32+x42+x52-20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說法:①方差為S2;②平均數(shù)為2;③平均數(shù)為4;④方差為4S2.其中正確的說法是( 。
          A、①②B、①③C、②④D、③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知數(shù)據(jù)1,2,3,3,4,5,則下列關(guān)于這組數(shù)據(jù)的說法錯(cuò)誤的是( 。
          A、平均數(shù)、中位數(shù)和眾數(shù)都是3
          B、極差為4
          C、方差為10
          D、標(biāo)準(zhǔn)差是
          15
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知一組正數(shù)x1,x2,x3,x4,x5的方差S2=
          1
          5
          x
          2
          1
          +
          x
          2
          2
          +
          x
          2
          3
          +
          x
          2
          4
          +
          x
          2
          5
          -20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說法:(1)方差為S2;(2)平均數(shù)為2;(3)平均數(shù)為4;(4)方差為4S2,其中正確的說法是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          解下列方程,將得到的解填入下面的表格中,觀察表格中兩個(gè)解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
          (1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
          方  程 x1 x2 x1+x2 x1.x2
          (1)
          0
          0
          2
          2
          2
          2
          0
          0
          (2)
          -4
          -4
          1
          1
          -3
          -3
          -4
          -4
          (3)
          2
          2
          3
          3
          5
          5
          6
          6
          請(qǐng)同學(xué)們仔細(xì)觀察方程的解,你會(huì)發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項(xiàng)之間有一定的關(guān)系.
          一般的,對(duì)于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
          則x1+x2=
          -p
          -p
          ,x1.x2=
          q
          q

          (2)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
          ①已知一元二次方程x2-2x-7=0的兩個(gè)根為x1,x2,則x1+x2的值為
          B
          B

          A.-2     B.2     C.-7     D.7
          ②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          探究發(fā)現(xiàn):
          解下列方程,將得到的解填入下面的表格中,觀察表格中兩個(gè)解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
          (1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
          方  程 x1 x2 x1+x2 x1•x2
          (1)
          (2)
          (3)
          (1)請(qǐng)用文字語言概括你的發(fā)現(xiàn).
          (2)一般的,對(duì)于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=
          -p
          -p
          ,x1•x2
          q
          q

          (3)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
          ①已知一元二次方程x2-2x-7=0的兩個(gè)根為x1,x2,則x1+x2的值為
          B
          B

          A.-2     B.2     C.-7     D.7
          ②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案