日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)

          (1)(2分)求點A、E的坐標(biāo);

          (2)(2分)若y=過點A、E,求拋物線的解析式。

          (3)(5分)連結(jié)PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由

           

          【答案】

           

          (1)E(0,

          (2)y=

          (3)在

          【解析】解:(1)連結(jié)AD,不難求得A(1,2

               OE=,得E(0,

          (2)因為拋物線y=過點A、E

               由待定系數(shù)法得:c=,b=

               拋物線的解析式為y=

          (3)大家記得這樣一個常識嗎?

               “牽牛從點A出發(fā),到河邊l喝水,再到點B處吃草,走哪條路徑最短?”即確定l上的點P

               方法是作點A關(guān)于l的對稱點A',連結(jié)A'B與l的交點P即為所求.

               

              本題中的AC就是“河”,B、D分別為“出發(fā)點”和“草地”。

          由引例并證明后,得先作點D關(guān)于AC的對稱點D',

          連結(jié)BD'交AC于點P,則PB與PD的和取最小值,

          即△PBD的周長L取最小值。

          不難求得∠D'DC=30º

          DF=,DD'=2

          求得點D'的坐標(biāo)為(4,

          直線BD'的解析式為:x+

          直線AC的解析式為:

          求直線BD'與AC的交點可得點P的坐標(biāo)(,)。

          此時BD'===2

          所以△PBD的最小周長L為2+2

          把點P的坐標(biāo)代入y=成立,所以此時點P在拋物線上。

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC是邊長為6cm的等邊三角形,動點P,Q同時從A、B兩點出發(fā),分別沿AB、BC方向精英家教網(wǎng)勻速運動,其中點P運動的速度是1cm/s,點Q運動的速度是2cm/s,當(dāng)點Q運動到點C時,P,Q都停止運動.
          (1)出發(fā)后運動2s時,試判斷△BPQ的形狀,并說明理由;那么此時PQ和AC的位置關(guān)系呢?請說明理由;
          (2)設(shè)運動時間為t,△BPQ的面積為S,請用t的表達(dá)式表示S.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知△ABC是邊長為1cm的等邊三角形,以BC為邊作等腰三角形BCD,使得DB=DC,且∠BDC=120°,點M是AB邊上的一個動點,作∠MDN交AC邊于點N,且滿足∠MDN=60°,則△AMN的周長為
          2
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC是邊長為2
          3
          的等邊三角形.點E、F分別在CB和BC的延長線上,且∠EAF=12O°,設(shè)BE=x,CF=y.
          (1)求y與x的函數(shù)表達(dá)式,并求出自變量x的取值范圍.
          (2)當(dāng)x為何值時,△ABE≌△FCA.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1998•江西)如圖,已知△ABC是邊長為4的等邊三角形,AB在x軸上,點C在第一象限,AC交y軸于點D,點A的坐標(biāo)為(-1,0).
          (1)求B、C、D三點的坐標(biāo);
          (2)拋物線y=ax2+bx+c經(jīng)過B、C、D三點,求它的解析式;
          (3)過點D作DE∥AB交經(jīng)過B、C、D三點的拋物線于點E,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知△ABC是邊長為1的等邊三角形,△DBC是以BC為斜邊的等腰直角三角形,那么點B到直線AD的距離為:
          1
          2
          1
          2

          查看答案和解析>>

          同步練習(xí)冊答案