日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=ax2+bx+3y軸于點A,交x軸于點B-3,0)和點C1,0),頂點為點M

          1)求拋物線的解析式;

          2)如圖,點Ex軸上一動點,若AME的周長最小,請求出點E的坐標;

          3)點F為直線AB上一個動點,點P為拋物線上一個動點,若BFP為等腰直角三角形,請直接寫出點P的坐標.

          【答案】1 ;(2E-,0);(3)點P的坐標為(2,-5)或(1,0).

          【解析】

          1)設拋物線的解析式為:y=ax+3)(x-1),然后將點A的坐標代入函數(shù)解析式即可求得此拋物線的解析式;

          2)作A關于x軸的對稱點A′0-3),連接MA′x軸于E,此時AME的周長最小,求出直線MA'解析式即可求得E的坐標;

          3)如圖2,先求直線AB的解析式為:y=x+3,根據(jù)解析式表示點F的坐標為(mm+3),

          分三種情況進行討論:

          ①當∠PBF=90°時,由F1Px軸,得Pm-m-3),把點P的坐標代入拋物線的解析式可得結(jié)論;

          ②當∠BF3P=90°時,如圖3,點PC重合,

          ③當∠BPF4=90°時,如圖3,點PC重合,

          從而得結(jié)論.

          1)當x=0時,y=3,即A0,3),

          設拋物線的解析式為:y=ax+3)(x-1),

          A0,3)代入得:3=-3a,

          a=-1

          y=-x+3)(x-1=-x2-2x+3,

          即拋物線的解析式為:y=-x2-2x+3;

          2y=-x2-2x+3=-x+12+4

          M-1,4),

          如圖1,作點A03)關于x軸的對稱點A'0,-3),連接A'Mx軸于點E,則點E就是使得AME的周長最小的點,

          設直線A′M的解析式為:y=kx+b,

          A'0,-3)和M-1,4)代入得:

          ,

          解得:

          ∴直線A'M的解析式為:y=-7x-3,

          y=0時,-7x-3=0,

          x=-,

          ∴點E-,0),

          3)如圖2,易得直線AB的解析式為:y=x+3

          設點F的坐標為(m,m+3),

          ①當∠PBF=90°時,過點BBPAB,交拋物線于點P,此時以BP為直角邊的等腰直角三角形有兩個,即BPF1BPF2

          OA=OB=3,

          ∴△AOBA'OB是等腰直角三角形,

          ∴∠F1BC=BF1P=45°,

          F1Px軸,

          Pm-m-3),

          把點P的坐標代入拋物線的解析式y=-x2-2x+3中得:

          -m-3=-m2-2m+3,

          解得:m1=2,m2=-3(舍),

          P2,-5);

          ②當∠BF3P=90°時,如圖3

          ∵∠F3BP=45°,且∠F3BO=45°,

          ∴點PC重合,

          P10),

          ③當∠BPF4=90°時,如圖3,

          ∵∠F4BP=45°,且∠F4BO=45°,

          ∴點PC重合,

          P1,0),

          綜上所述,點P的坐標為(2-5)或(1,0).

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】畫出二次函數(shù)y=2x2+8x+6的圖象.

          1)根據(jù)圖象寫出當yx的增大而減小時x的范圍;

          2)根據(jù)圖象寫出滿足不等式2x2+8x+60x的取值范圍;

          3)求函數(shù)圖象與兩坐標軸交點所圍成的三角形的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為6,點E是正方形內(nèi)部一點,連接BECE,且∠ABE=BCE,點P是邊AB上一動點,連接PDPE,則PD+PE的最小值為_____.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在一次聚會上,規(guī)定每兩個人見面必須握手,且握手1次.

          1)若參加聚會的人數(shù)為3,則共握手   次;若參加聚會的人數(shù)為5,則共握手   次;

          2)若參加聚會的人數(shù)為nn為正整數(shù)),則共握手   次;

          3)若參加聚會的人共握手28次,請求出參加聚會的人數(shù).

          4)嘉嘉由握手問題想到了一個數(shù)學問題:若線段AB上共有m個點(不含端點A,B),線段總數(shù)為多少呢?請直接寫出結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】書香校園活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:

          類別

          家庭藏書m

          學生人數(shù)

          A

          0≤m≤25

          20

          B

          26≤m≤100

          a

          C

          101≤m≤200

          50

          D

          m≥201

          66

          根據(jù)以上信息,解答下列問題:

          (1)該調(diào)查的樣本容量為_____a_____;

          (2)在扇形統(tǒng)計圖中,“A”對應扇形的圓心角為_____°

          (3)若該校有2000名學生,請估計全校學生中家庭藏書200本以上的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,⊙OABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點DDEAC分別交AC、AB的延長線于點EF

          1)求證:EF是⊙O的切線;

          2)若AC=4CE=2,求的長度.(結(jié)果保留π

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,E的中點,AEBC交于點F,C=2EAB.

          (1)求證:AC是⊙O的切線;

          (2)已知CD=4,CA=6,

          ①求CB的長;

          ②求DF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,二次函數(shù)軸于點、,交軸于點,在軸上有一點,連接.

          (1)求二次函數(shù)的表達式;

          (2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;

          (3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標,若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】1)如圖,為正三角形,點邊上任意一點,以為邊作正,連接,求的值;

          2)如圖,為等腰直角三角形,,點為腰上任意一點,以為斜邊作等腰直角,連接,求的值;

          3)如圖,為任意等腰三角形,點為腰上任意一點,以為底邊作等腰,使,并且BC=AC,連接,寫出的值,并說明理由.

          查看答案和解析>>

          同步練習冊答案