日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2003•資陽)如圖,已知拋物線C的解析式為y=x2-(a+b)x+,其中a、b、c分別是△ABC中∠A、∠B、∠C所對邊的長.
          (1)求證:拋物線C與x軸必有兩個交點;
          (2)設(shè)P、Q是拋物線C與x軸的兩個交點,求證:P、Q兩點總在x軸的正半軸上;
          (3)設(shè)直線l:y=ax-bc與拋物線交于點E、F,與y軸交于點M,N為拋物線與y軸的交點,直線x=a是拋物線的對稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時,確定△ABC的形狀.

          【答案】分析:(1)令y=0,用根的判別式和三角形三邊關(guān)系即可證得.
          (2)設(shè)出P、Q坐標(biāo),根據(jù)韋達定理表示出兩點橫坐標(biāo)的和與積的表達式,即可證得兩點橫坐標(biāo)均為正數(shù).
          (3)先根據(jù)拋物線的對稱軸求出a、b的關(guān)系.然后聯(lián)立拋物線與直線l的解析式,求出E、F的橫坐標(biāo),已知△MNE的面積是△MNF的面積的5倍,根據(jù)等底三角形的面積比等于高的比,由此可得出E的橫坐標(biāo)是F的橫坐標(biāo)的5倍,由此可求出a、c的關(guān)系,由此可求出三角形ABC的形狀.
          解答:(1)證明:令y=0,則有x2-(a+b)x+=0(*),△=(a+b)2-c2,
          由于a、b、c分別是△ABC的三邊,
          因此a+b>c>0,
          因此(a+b)2>c2
          ∴△>0,
          因此拋物線總與x軸有兩個交點.

          (2)證明:設(shè)P、Q的坐標(biāo)為(x1,0)(x2,0),
          根據(jù)(1)可得:x1•x2=>0,
          因此x1,x2同號.
          x1+x2=a+b>0,
          因此x1>0,x2>0;
          即P、Q總在x軸的正半軸上.

          (3)解:由題意知:x==a,因此a=b.
          設(shè)E點的橫坐標(biāo)為m,F(xiàn)點的橫坐標(biāo)為n,聯(lián)立c和l可得:
          x2-2ax+=ax-ac,
          即x2-3ax+=0,
          ∴m=,n=
          由題意可知:m=5n;
          即3a+=15a-5
          即5a2-4ac-c2=0,
          解得a=-(不合題意舍去),a=c
          因此a=b=c,△ABC為等邊三角形.
          點評:本題考查了二次函數(shù)與一元二次方程的關(guān)系、韋達定理、函數(shù)圖象交點、等邊三角形的判定等知識點.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2003年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2003•資陽)如圖,已知拋物線C的解析式為y=x2-(a+b)x+,其中a、b、c分別是△ABC中∠A、∠B、∠C所對邊的長.
          (1)求證:拋物線C與x軸必有兩個交點;
          (2)設(shè)P、Q是拋物線C與x軸的兩個交點,求證:P、Q兩點總在x軸的正半軸上;
          (3)設(shè)直線l:y=ax-bc與拋物線交于點E、F,與y軸交于點M,N為拋物線與y軸的交點,直線x=a是拋物線的對稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時,確定△ABC的形狀.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:填空題

          (2003•資陽)如圖,△ABC的中位線EF交中線AD于G,則△AGE與△ABC的面積之比為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:填空題

          (2003•資陽)如圖,已知AB是⊙O的直徑,AB⊥CD于E,切線BF交AD的延長線于F,若AB=10,CD=8,則切線BF的長是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2003•資陽)如圖,在△ABC中,已知∠ACB=90°,CD⊥AB于D,AC=,BD=3.
          (1)請根據(jù)下面求cosA的解答過程,在橫線上填上適當(dāng)?shù)慕Y(jié)論,使解答正確完整,
          ∵CD⊥AB,∠ACB=90°∴AC=______cosA,______=AC•cosA
          由已知AC=6,BD=3,∴=AB cosA=(AD+BD)cosA=(cosA+3)cosA,設(shè)t=cosA,則t>0,且上式可化為t2+______

          查看答案和解析>>