【題目】下列一定是一元二次方程的有( )
(1)(a-1)x+bx+c=0(a,b,c是實數);(2)2x++3=0;(3)(1-2x)(3-x)=2x+1;(4)x+2x-y=0;(5)
x-8=
x
A.1個B.2個C.3個D.4個
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,∠C=90°,AC<BC,D為BC上一點,且到A,B兩點的距離相等.
(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結AD,若∠B=33°,則∠CAD= °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據要求,解答下列問題:
(1)①方程x2﹣x﹣2=0的解為 ;
②方程x2﹣2x﹣3=0的解為 ;
③方程x2﹣3x﹣4=0的解為 ;
…
(2)根據以上方程特征及其解的特征,請猜想:
①方程x2﹣9x﹣10=0的解為 ;
②請用配方法解方程x2﹣9x﹣10=0,以驗證猜想結論的正確性.
(3)應用:關于x的方程 的解為x1=﹣1,x2=n+1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線與x軸交于A、B兩點(點A在點B的左側),交y軸的正半軸于點C,其頂點為M,MH⊥x軸于點H,MA交y軸于點N,sin∠MOH=
.
(1)求此拋物線的函數表達式;
(2)過H的直線與y軸相交于點P,過O,M兩點作直線PH的垂線,垂足分別為E,F,若 時,求點P的坐標;
(3)將(1)中的拋物線沿y軸折疊,使點A落在點D處,連接MD,Q為(1)中的拋物線上的一動點,直線NQ交x軸于點G,當Q點在拋物線上運動時,是否存在點Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數y=x+|x﹣2|的圖象與性質
小明根據學習函數的經驗,對函數y=x+|x﹣2|的圖象與性質進行了探究
下面是小明的探究過程,請補充完成:
(1)化簡函數解析式,當x≥2時,y= ;當x<2時,y= ;
(2)根據(1)中的結果,請在圖1的坐標系中畫出函數y=x+|x﹣2|的圖象;
(3)結合函數的圖象,寫出該函數的一條性質: ;
(4)結合畫出的函數圖象,利用圖2解決問題,若關于x的方程ax+1=x+|x﹣2|有兩個實數根,直接寫出實數a的取值范圍: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售A、B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:
教學設備 | A | B |
進價(萬元/套) | 3 | 2.4 |
售價(萬元/套) | 3.3 | 2.8 |
該商場計劃購進兩種教學設備若干套,共需132萬元,全部銷售后可獲毛利潤18萬元.
(1)該商場計劃購進A、B兩種品牌的教學設備各多少套?
(2)通過市場調查,該商場決定在原計劃的基礎上,減少A種設備的購進數量,增加B種設備的購進數量,已知B種設備增加的數量是A種設備減少數量的1.5倍.若用于購進這兩種教學設備的總資金不超過138萬元,則A種設備購進數量最多減少多少套?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】溫州市處于東南沿海,夏季經常遭受臺風襲擊,一次,溫州氣象局測得臺風中心在溫州市的正西方向300千米的
處,以每小時
千米的速度向東偏南
的
方向移動,距臺風中心200千米的范圍是受臺風嚴重影響的區(qū)域,試問:
(1)臺風中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風嚴重影響的時間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com