【題目】二次函數(shù)y=﹣x2+bx+c的圖象與直線y=﹣
x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為C(﹣3,0).
(1)填空:b=_____,c=_____.
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)在(2)的條件下,點(diǎn)N在何位置時(shí),BM與NC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).
【答案】(1),1;(2)MN的最大值
【解析】
(1)由一次函數(shù)解析式求得點(diǎn)A、B的坐標(biāo),然后將其代入二次函數(shù)解析式,即利用待定系數(shù)法確定函數(shù)解析式;(2)設(shè)M的橫坐標(biāo)是x,則根據(jù)M和N所在函數(shù)的解析式,即可利用x表示出M、N的坐標(biāo),利用x表示出MN的長,利用二次函數(shù)的性質(zhì)求解;(3)BM與NC互相垂直平分,即四邊形BCMN是菱形,則BC=MC,據(jù)此即可列方程,求得x的值,從而得到N的坐標(biāo);
解:
(1)由直線y=﹣x+1得到:A(0,1),
把x=﹣3代入y=﹣x+1得到:y=﹣
×(﹣3)+1=
.
故B(﹣3,).
將A、B的坐標(biāo)分別代入y=﹣x2+bx+c,得
,
解得b=,c=1;
(2)設(shè)N(m,﹣m2
m+1) ,
則,M,P點(diǎn)的坐標(biāo)分別是(m,﹣m+1),(m,0),
∴MN=(﹣m2
m+1)﹣(﹣
m2+1) ,
=﹣m2﹣
m
=﹣(m+
)2+
,
∴當(dāng)m=﹣時(shí),MN的最大值為
;
(3)連接MN,BN,由BM與NC互相垂直平分,
∴四邊形BCMN是菱形
由BC∥MN,
∴MN=BC,且BC=MC,
而BC=﹣×(﹣3)+1=
,
即:﹣m2﹣
m=
,
且(﹣m+1)2+(m+3) 2=
,
解得:m=﹣1;
故當(dāng)N(﹣1,4)時(shí),BM與NC互相垂直平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫出線段CK長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】龐老師和馮老師準(zhǔn)備整理一批數(shù)學(xué)試卷.馮老師單獨(dú)整理需要50分鐘完成;若龐老師和馮老師共同整理30分鐘后,龐老師需再單獨(dú)整理30分鐘才能完成.
(1)求龐老師單獨(dú)整理需要多少分鐘完成;
(2)若馮老師因工作需要,他的整理時(shí)間不超過30分鐘,則龐老師至少整理多少分鐘才能完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步普及足球知識(shí),傳播足球文化,某市在中小學(xué)舉行了“足球在身邊”知識(shí)競賽活動(dòng),各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎(jiǎng)的學(xué)生有 人;
(2)在本次知識(shí)競賽活動(dòng)中,A,B,C,D 四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請(qǐng)用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快新舊動(dòng)能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,某公司決定對(duì)近期研發(fā)出的一種電子產(chǎn)品進(jìn)行降價(jià)促銷,使生產(chǎn)的電子產(chǎn)品能夠及時(shí)售出,根據(jù)市場調(diào)查:這種電子產(chǎn)品銷售單價(jià)定為200元時(shí),每天可售出300個(gè);若銷售單價(jià)每降低1元,每天可多售出5個(gè).已知每個(gè)電子產(chǎn)品的固定成本為100元.
(1)設(shè)銷售單價(jià)降低了元,用含
的代數(shù)式表示降價(jià)后每天可售出的個(gè)數(shù)是 ;
(2)問這種電子產(chǎn)品降價(jià)后得銷售單價(jià)為多少元時(shí),公司每天可獲利32000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,點(diǎn)
從點(diǎn)
出發(fā)沿
向點(diǎn)
勻速運(yùn)動(dòng),速度是
,過點(diǎn)
作
交
于點(diǎn)
,同時(shí),點(diǎn)
從點(diǎn)
出發(fā)沿
方向,在射線
上勻速運(yùn)動(dòng),速度是
,連接
、
,
與
交與點(diǎn)
,設(shè)運(yùn)動(dòng)時(shí)間為
.
(1)當(dāng)為何值時(shí),四邊形
是平行四邊形;
(2)設(shè)的面積為
,求
與
的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻,使得
的面積為矩形
面積的
;
(4)是否存在某一時(shí)刻,使得點(diǎn)
在線段
的垂直平分線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com