日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC是等腰直角三角形,其中CA=CB,四邊形CDEF是正方形,連結(jié)AF、BD.

          (1)觀察圖形,猜想AFBD之間有怎樣的關(guān)系,并證明你的猜想;

          (2)若將正方形CDEF繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),使正方形CDEF的一邊落在△ABC的內(nèi)部,請(qǐng)你畫出一個(gè)變換后的圖形,并對(duì)照已知圖形標(biāo)記字母,題(1)中猜想的結(jié)論是否仍然成立?若成立,直接寫出結(jié)論,不必證明;若不成立,請(qǐng)說(shuō)明理由.

          【答案】1)猜想:AF=BDAF⊥BD.

              證明:設(shè)AFDC交點(diǎn)為G.

              ∵FC=DCAC=BC,∠BCD=∠BCA+∠ACD,

              ∠ACF=∠DCF+∠ACD∠BCA=∠DCF=90°,

              ∴∠BCD=∠ACF.

              ∴△ACF≌△BCD.

              ∴AF=BD.,∠AFC=∠BDC.

              ∵∠AFC+∠FGC="90°," ∠FGC=DGA

              ∴∠BDC+∠DGA=90°.

              ∴AF⊥BD.

              ∴AF=BDAF⊥BD.

              (2)如圖,結(jié)論:AF=BDAF⊥BD.

          圖形不惟一,只要符合要求即可.

          如:圖1CD邊在△ABC的內(nèi)部;圖2CF邊在△ABC的內(nèi)部.

          【解析】一般線段的關(guān)系有數(shù)量關(guān)系和位置關(guān)系,此題AFDB的關(guān)系是AF=BDAF⊥BD,要證明它們可以利用等腰直角三角形性質(zhì)和正方形的性質(zhì)構(gòu)造全等條件證明△ACF≌△BCD,然后利用全等三角形的性質(zhì)可以解決題目的問(wèn)題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】本小題滿分8如圖,點(diǎn)E、F為線段BD的兩個(gè)三等分點(diǎn),四邊形AECF是菱形

          1試判斷四邊形ABCD的形狀,并加以證明;

          2若菱形AECF的周長(zhǎng)為20,BD為24,試求四邊形ABCD的面積

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校園文學(xué)社為了解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問(wèn)卷調(diào)查,要求學(xué)生選出自己喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:

          請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

          (1)第一版=____%,“第四版”對(duì)應(yīng)扇形的圓心角為________°;

          (2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

          (3)若該校有1200名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡“第三版”的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中兩條直線為l1:y=–3x+3,l2:y=–3x+9,直線l1x軸于點(diǎn)A,交y軸于點(diǎn)B,直線l2x軸于點(diǎn)D,過(guò)點(diǎn)Bx軸的平行線交l2于點(diǎn)C,點(diǎn)A、E關(guān)于y軸對(duì)稱,拋物線y=ax2+bx+c過(guò)E、B、C三點(diǎn),下列判斷中:

          ①a–b+c=0;

          ②2a+b+c=5;

          ③拋物線關(guān)于直線x=1對(duì)稱;

          ④拋物線過(guò)點(diǎn)(b,c);

          ⑤S四邊形ABCD=5;

          其中正確的個(gè)數(shù)有( )

          A. 5 B. 4 C. 3 D. 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某人用如下方法測(cè)一鋼管的內(nèi)徑:將一小段鋼管豎直放在平臺(tái)上.向內(nèi)放入兩個(gè)半徑為5 cm的鋼球,測(cè)得上面一個(gè)鋼球的最高點(diǎn)到底面的距離DC16 cm(鋼管的軸截面如圖所示),則鋼管的內(nèi)徑AD的長(zhǎng)為_______cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算:(1

          2

          3

          4

          5

          6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知A(-1,0),B(1,0),Cy軸正半軸上一點(diǎn),點(diǎn)D為第三象限一動(dòng)點(diǎn),CDABF,且∠ADB=2BAC,

          (1)求證:∠ADB與∠ACB互補(bǔ);

          (2)求證:CD平分∠ADB;

          (3)若在D點(diǎn)運(yùn)動(dòng)的過(guò)程中,始終有DC=DA+DB,在此過(guò)程中,∠BAC的度數(shù)是否變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出∠BAC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD為矩形,EBC邊的中點(diǎn),連接AE,以AD為直徑的⊙OAE于點(diǎn)F,連接CF.求證:CF⊙O相切.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

          (1) a= ,b= ,c=

          (2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.

          (3) 點(diǎn)AB,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

          (4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案