日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD中,AB′=10 BC=8,以CD為直徑作O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形ABCD的邊ABO相切,切點(diǎn)為E

          (1)證明:CE平分∠BCD;

          (2)求線段AE的長.

          【答案】(1)詳見解析;(2)6

          【解析】

          1)連接OE,利用切線的性質(zhì)證得OEAB,根據(jù)矩形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)得到∠B=90°,即可證得OEBC,利用平行線的性質(zhì)即可得到結(jié)論;

          2)過點(diǎn)OOFBC于點(diǎn)F,得到四邊形OEBF為矩形,求出OE得到CF,即可根據(jù)勾股定理求出OF,由此得到答案.

          1)連接OE,

          直線ABO的相切,

          OEAB,

          在矩形ABCDB=90°,

          由旋轉(zhuǎn)可知B=90°,

          ∴OEBC,

          ∴∠BCE=∠OEC,

          ∴OE=OC,

          ∴∠OCE=∠OEC,

          ∴∠OCE=∠BCE,

          CE平分∠BCD;

          2)過點(diǎn)OOFBC于點(diǎn)F,

          則四邊形OEBF為矩形,

          BF=OE=10÷2=5

          CF=8-5=3,

          Rt△OFC中,,

          AE=AB-BE=AB-OF=10-4=6.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2﹣6x﹣16,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的線段CD的長為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,AC=4,BC=3,點(diǎn)DAC的中點(diǎn),連接BD,按以下步驟作圖:①分別以B,D為圓心,大于BD的長為半徑作弧,兩弧相交于點(diǎn)P和點(diǎn)Q;②作直線PQAB于點(diǎn)E,交BC于點(diǎn)F,則BF=( 。

          A. B. 1C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】從如圖所示的二次函數(shù))的圖象中,觀察得出了下面5條信息:①;;;.你認(rèn)為其中正確的信息有(

          A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,A為反比例函數(shù)y(其中x0)圖象上的一點(diǎn),在x軸正半軸上有一點(diǎn)B,OB4.連接OA、AB,且OAAB2

          1)求k的值;

          2)過點(diǎn)BBCOB,交反比例函數(shù)yx0)的圖象于點(diǎn)C

          連接AC,求△ABC的面積;

          在圖上連接OCAB于點(diǎn)D,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一機(jī)器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機(jī)器人從開始到停止所需時(shí)間為__s

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(閱讀)如圖1,在等腰ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1h2.連接AM

                

          (思考)在上述問題中,h1,h2h的數(shù)量關(guān)系為:

          (探究)如圖2,當(dāng)點(diǎn)MBC延長線上時(shí),h1、h2h之間有怎樣的數(shù)量關(guān)系式?并說明理由.

          (應(yīng)用)如圖3,在平面直角坐標(biāo)系中有兩條直線l1l2y=3x+3,若l2上的一點(diǎn)Ml1的距離是1,請運(yùn)用上述結(jié)論求出點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):

          萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其外心和內(nèi)心,則.下面是該定理的證明過程(部分):

          延長AI交⊙O于點(diǎn)D,過點(diǎn)I作⊙O的直徑MN,連接DM,AN

          ∵∠D=N,∴∠DMI=NAI(同弧所對的圓周角相等),

          ∴△MDI∽△ANI.∴,∴

          如圖2,在圖1(隱去MDAN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BIIF

          DE是⊙O的直徑,∴∠DBE=90°

          ∵⊙IAB相切于點(diǎn)F,∴∠AFI=90°

          ∴∠DBE=IFA

          ∵∠BAD=E(同弧所對圓周角相等),

          ∴△AIF∽△EDB

          ,∴

          任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);

          2)請判斷BDID的數(shù)量關(guān)系,并說明理由.

          3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

          4)應(yīng)用:若ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則ABC的外心與內(nèi)心之間的距離為 cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解下列方程

          1x29

          2xx+2)﹣(x+2)=0;

          3x26x40

          4x2+x60;

          查看答案和解析>>

          同步練習(xí)冊答案