日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,如圖,矩形ABCD中,AD6,DC7,菱形EFGH的三個頂點EG,H分別在矩形ABCD的邊AB,CD,DA上,AH2,連接CF

          1)若DG2,求證四邊形EFGH為正方形;

          2)若DG6,求FCG的面積;

          3)當(dāng)DG為何值時,FCG的面積最。

          【答案】1)見解析;(2SFCG=1;(3)當(dāng)DG時,△FCG的面積最小為(7-).

          【解析】

          1)利用菱形和矩形的性質(zhì)得到∠D=∠A90°,HGHE,進(jìn)而利用HL證得

          RtAHERtDGH,根據(jù)全等三角形的性質(zhì)得到∠DHG=∠HEA,證得∠EHG90°,即可得證;

          2)過FFMDC,交DC延長線于M,連接GE,由于ABCD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,進(jìn)而得到∠AEH=∠MGF,再結(jié)合∠A=∠M90°,HEFG,可證△AHE≌△MFG,從而有FMHA2,即無論菱形EFGH如何變化,點F到直線CD的距離始終為定值2,進(jìn)而可求三角形面積;

          (3)設(shè)DGx,則由第(2)小題得,SFCG7x,在△AHE中,AEAB7,利用勾股定理可得HE253,在Rt△DHG中,再利用勾股定理可得x2+1653,進(jìn)而可求x,從而得到當(dāng)DG時,△FCG的面積最小.

          1)∵四邊形ABCD為矩形,四邊形HEFG為菱形,

          ∴∠D=∠A90°,HGHE,又AHDG2,

          RtAHERtDGHHL),

          ∴∠DHG=∠HEA,

          ∵∠AHE+HEA90°,

          ∴∠AHE+DHG90°,

          ∴∠EHG90°,

          ∴四邊形HEFG為正方形;

          2)過FFMDC,交DC延長線于M,連接GE

          ABCD,

          ∴∠AEG=∠MGE

          HEGF,

          ∴∠HEG=∠FGE,

          ∴∠AEH=∠MGF,

          在△AHE和△MFG中,∠A=∠M90°,HEFG,

          ∴△AHE≌△MFG,

          FMHA2,即無論菱形EFGH如何變化,點F到直線CD的距離始終為定值2,

          因此;

          3)設(shè)DGx,則由第(2)小題得,SFCG7x,在△AHE中,AEAB7,

          HE253,

          x2+1653,

          x

          SFCG的最小值為,此時DG,

          ∴當(dāng)DG時,△FCG的面積最小為().

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)yx26x+m滿足以下條件:當(dāng)﹣2x<﹣1時,它的圖象位于x軸的下方;當(dāng)8x9時,它的圖象位于x軸的上方,則m的值為( 。

          A.27B.9C.7D.16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某游樂場部分平面圖如圖所示,CE,A在同一直線上,DE,B在同一直線上,測得A處與E處的距離為80 mC處與D處的距離為34 m,C90°ABE90°,BAE30°.( ≈1.4, ≈1.7)

          (1)求旋轉(zhuǎn)木馬E處到出口B處的距離;

          (2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AFBC,垂足為D,點E為弧BF上一點,且BE=CF,

          (1)求證:AE是⊙O的直徑;

          (2)若∠ABC=EAC,AE=8,求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

          (1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

          (2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2

          (3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在11×11的正方形網(wǎng)格中,TAB的頂點分別為T1,1),A2,3),B4,2).

          1)以點T1,1)為位似中心,按比例尺(TA′TA31,在位似中心的同側(cè)將TAB放大為TA′B′,放大后點A,B的對應(yīng)點分別為A′,B′,畫出TA′B′,并寫出點A′B′的坐標(biāo);點A′的坐標(biāo)為 ,點B′的坐標(biāo)為

          2)在(1)中,若Ca,b)為線段AB上任一點,寫出變化后點C的對應(yīng)點C′的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設(shè)AD的長為m,DC的長為m。

          1)求之間的函數(shù)關(guān)系式;

          2)根據(jù)實際情況,對于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請說明理由;

          3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料ADDC的長都是整米數(shù),求出滿足條件的所有圍建方案。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線軸的交點為

          (1)求拋物線的頂點坐標(biāo);

          (2)若

          ①求拋物線的解析式;

          ②)已知點,,將拋物線在的部分向上平移個單位得到圖象,若圖象與線段恰有個公共點,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,對角線AC的中點為O,點G,H在對角線AC上,AGCH,直線GH繞點O逆時針旋轉(zhuǎn)α角,與邊AB、CD分別相交于點E、F(點E不與點AB重合).

          1)求證:四邊形EHFG是平行四邊形;

          2)若∠α90°AB9,AD3,求AE的長.

          查看答案和解析>>

          同步練習(xí)冊答案