日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點(diǎn)P在BC上移動(dòng),則PA+PD的最小值為
          2
          17
          2
          17
          分析:延長(zhǎng)AB到A′,使得A′B=AB,連接A′D交BC于P,此時(shí)PA+PD最小,即當(dāng)P在AD的中垂線上時(shí),PA+PD取最小值,然后在直角△AA′D中,利用勾股定理即可求解.
          解答:解:過(guò)點(diǎn)D作DE⊥BC于E,則四邊形ABED是矩形,BE=AD=2,
          則EC=BC-BE=CD-BE=5-2=3,
          在直角△DCE中,DE=
          CD2-EC2
          =
          52-32
          =4,
          又∵四邊形ABED是矩形,
          ∴AB=DE=4,
          延長(zhǎng)AB到A′,使得A′B=AB,連接A′D交BC于P,此時(shí)PA+PD最小,即當(dāng)P在AD的中垂線上時(shí),PA+PD取最小值,
          ∴AA′=2AB=8,
          在直角△AA′D中,DA′=
          AD2+AA′2
          =
          4+64
          =2
          17

          則PA+PD的最小值為2
          17
          點(diǎn)評(píng):此題主要考查了利用軸對(duì)稱(chēng)求最短路線問(wèn)題,此題綜合性較強(qiáng),考查了梯形一般輔助線的作法、勾股定理、三角形的面積計(jì)算等知識(shí)點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點(diǎn)P在BC上移動(dòng),則當(dāng)PA+PD取最小值時(shí),△A精英家教網(wǎng)PD中邊AP上的高為( 。
          A、
          2
          17
          17
          B、
          4
          17
          17
          C、
          8
          17
          17
          D、3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2011•遼陽(yáng))已知直角梯形ABCD,AB∥CD,∠C=90°,AB=BC=
          12
          CD,E為CD的中點(diǎn).
          (1)如圖(1)當(dāng)點(diǎn)M在線段DE上時(shí),以AM為腰作等腰直角三角形AMN,判斷NE與MB的位置關(guān)系和數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論;
          (2)如圖(2)當(dāng)點(diǎn)M在線段EC上時(shí),其他條件不變,(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知直角梯形ABCD如圖放置在平面直角坐標(biāo)系中,∠DCB=30°,AB邊在y軸上,點(diǎn)D的橫坐標(biāo)為6,CQ⊥x軸,垂足為Q,點(diǎn)Q的橫坐標(biāo)為12,過(guò)CD的直線l交x軸于點(diǎn)E,E點(diǎn)坐標(biāo)為(18,0).
          (1)求直線l的解析式,以及點(diǎn)A和點(diǎn)B的坐標(biāo);
          (2)P為線段CD上一動(dòng)點(diǎn),連結(jié)PQ、OP,探究△POQ的周長(zhǎng),并求出當(dāng)周長(zhǎng)最小時(shí),P的坐標(biāo)及此時(shí)的該三角形的周長(zhǎng);
          (3)點(diǎn)N從點(diǎn)Q(12,0)出發(fā),沿著x軸以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)M從點(diǎn)B開(kāi)始沿B-C-D-A的方向繞梯形ABCD運(yùn)動(dòng),運(yùn)動(dòng)速度為每秒為2個(gè)單位長(zhǎng)度,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,連結(jié)MO和MN,試探究當(dāng)t為何值時(shí)MO=MN.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,點(diǎn)P從A點(diǎn)出發(fā),沿AD邊以1的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊以3的速度向點(diǎn)B運(yùn)動(dòng),P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.
          (1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?
          (2)當(dāng)t為何值時(shí),四邊形PQCD為等腰梯形?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案