日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 小華看著電視里的舞蹈節(jié)目:七個身穿不同民族服裝的舞蹈演員正在面對觀眾進(jìn)行隊列變換,他陷入了沉思:這7個演員面對觀眾一共會有幾種隊列變換呢?…為了解決這一問題,他是這樣思考和探索的:
          ①若只有一個演員A,那就只有隊列變換A,共1種;
          ②若有二個演員A、B,那就有隊列變換:AB和BA,共2種;
          ③若有三個演員A、B、C,那就有隊列變換:ABC、ACB、BAC、BCA、CAB、CBA,共6種;
          ④若有四個演員A、B、C、D,那就有隊列變換(小華把這四個字母在紙上不停的變換順序地排列著、寫著)…數(shù)數(shù)看,哇!有24種,變化如此之快呀,五個、六個、七個演員呢?看來不可再強(qiáng)攻,否則就…,還是智取吧…
          通過查閱資料,小華發(fā)現(xiàn)了如下的材料:
          材料:從m個人中選出n人排成一列的所有排列方法總數(shù)(下均簡稱排列數(shù))記為A
           
          n
          m
          =m×(m-1)×(m-2)×…×(m-n+1),特別地當(dāng)m=n時即從m個人中選出m個人進(jìn)行全排列為A
           
          m
          m
          =m×(m-1)×(m-2)×…×2×1
          再應(yīng)用表格吧,記得書上有這樣的例子,老師也曾示范過,它能更加清楚地反映其中的數(shù)字規(guī)律呢?
          演員的個數(shù) 1 2 3 4
          可能有的變換數(shù) 1 2 6 24
          (1)求A
           
          2
          5
          和A
           
          3
          3
          的值?
          (2)計算這7個舞蹈演員面對觀眾一共會有幾種隊列變換?
          (3)6個人排成一列,其中甲排最前面,同時乙排最后面的概率是多少?
          分析:(1)根據(jù)從m個人中選出n人排成一列的所有排列方法總數(shù)記為A
           
          n
          m
          =m×(m-1)×(m-2)×…×(m-n+1),可知A
           
          2
          5
          是從5個人中選出2人排成一列的所有排列方法總數(shù),即為5×4=20;同理得出A
           
          3
          3
          =3×2×1=6;
          (2)根據(jù)已知得出7個舞蹈演員跳舞,面對觀眾作隊形變化的規(guī)律是7×6×5×4×3×2×1;
          (3)先求出6個人排成一列的所有排列方法總數(shù),再求出甲排最前面,同時乙排最后面的排列方法總數(shù),然后根據(jù)概率公式求解.
          解答:解:(1)A
           
          2
          5
          =5×4=20,A
           
          3
          3
          =5×4×3=60;

          (2)∵7個舞蹈演員跳舞,
          ∴面對觀眾作隊列變換的情況有:7×6×5×4×3×2×1=5040;

          (3)∵6個人排成一列,不管甲乙的位置,總的排法是從6個人里面選出6個人進(jìn)行全排列
          A
          6
          6
          =6×5×4×3×2×1=720,
          其中甲排最前面,同時乙排最后面,相當(dāng)于是4個人在排
          A
          4
          4
          =4×3×2×1=24,
          ∴6個人排成一列,其中甲排最前面,同時乙排最后面的概率是
          24
          720
          =
          1
          30
          點評:此題主要考查了規(guī)律性問題以及可能性大小有關(guān)知識,得出面對觀眾作隊列變換的規(guī)律是解決問題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          24、小華看著電視里的舞蹈節(jié)目:七個身穿不同民族服裝的舞蹈演員正在面對觀眾進(jìn)行隊列變換,他陷入了沉思:這7個演員面對觀眾一共會有幾種隊列變換呢?…為了解決這一問題,他是這樣思考和探索的:
          ①若只有一個演員A,那就只有隊列變換A,共1種;
          ②若有二個演員A、B,那就有隊列變換:AB和BA,共2種;
          ③若有三個演員A、B、C,那就有隊列變換:ABC、ACB、BAC、BCA、CAB、CBA,共6種;
          ④若有四個演員A、B、C、D,那就有隊列變換(小華把這四個字母在紙上不停的變換順序地排列著、寫著)…數(shù)數(shù)看,哇!有24種,變化如此之快呀,五個、六個、七個演員呢?看來不可再強(qiáng)攻,否則就…,還是智取吧…
          再應(yīng)用表格吧,記得書上有這樣的例子,老師也曾示范過,它能更加清楚地反映其中的數(shù)字規(guī)律呢:
          演員的個數(shù)_ 1_ 2_ 3_ 4_ …_
          可能有的變換數(shù)_ 1_ 2_ 6_ 24_ …_

          (1)你知道這7個舞蹈演員面對觀眾一共會有幾種隊列變換嗎?說說你的理由.
          (2)請你先仔細(xì)體會小華的解題策略,然后再探索:220的末位數(shù)字是多少?說說你是怎樣想的.例如:25的末位數(shù)字是5;2043的末位數(shù)字是3.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          小華看著電視里的舞蹈節(jié)目:七個身穿不同民族服裝的舞蹈演員正在面對觀眾進(jìn)行隊列變換,他陷入了沉思:這7個演員面對觀眾一共會有幾種隊列變換呢?…為了解決這一問題,他是這樣思考和探索的:
          ①若只有一個演員A,那就只有隊列變換A,共1種;
          ②若有二個演員A、B,那就有隊列變換:AB和BA,共2種;
          ③若有三個演員A、B、C,那就有隊列變換:ABC、ACB、BAC、BCA、CAB、CBA,共6種;
          ④若有四個演員A、B、C、D,那就有隊列變換(小華把這四個字母在紙上不停的變換順序地排列著、寫著)…數(shù)數(shù)看,哇!有24種,變化如此之快呀,五個、六個、七個演員呢?看來不可再強(qiáng)攻,否則就…,還是智取吧…
          通過查閱資料,小華發(fā)現(xiàn)了如下的材料:
          材料:從m個人中選出n人排成一列的所有排列方法總數(shù)(下均簡稱排列數(shù))記為A數(shù)學(xué)公式=m×(m-1)×(m-2)×…×(m-n+1),特別地當(dāng)m=n時即從m個人中選出m個人進(jìn)行全排列為A數(shù)學(xué)公式=m×(m-1)×(m-2)×…×2×1
          再應(yīng)用表格吧,記得書上有這樣的例子,老師也曾示范過,它能更加清楚地反映其中的數(shù)字規(guī)律呢?
          演員的個數(shù)1234
          可能有的變換數(shù)12624
          (1)求A數(shù)學(xué)公式和A數(shù)學(xué)公式的值?
          (2)計算這7個舞蹈演員面對觀眾一共會有幾種隊列變換?
          (3)6個人排成一列,其中甲排最前面,同時乙排最后面的概率是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          小華看著電視里的舞蹈節(jié)目:七個身穿不同民族服裝的舞蹈演員正在面對觀眾進(jìn)行隊列變換,他陷入了沉思:這7個演員面對觀眾一共會有幾種隊列變換呢?…為了解決這一問題,他是這樣思考和探索的:
          ①若只有一個演員A,那就只有隊列變換A,共1種;
          ②若有二個演員A、B,那就有隊列變換:AB和BA,共2種;
          ③若有三個演員A、B、C,那就有隊列變換:ABC、ACB、BAC、BCA、CAB、CBA,共6種;
          ④若有四個演員A、B、C、D,那就有隊列變換(小華把這四個字母在紙上不停的變換順序地排列著、寫著)…數(shù)數(shù)看,哇!有24種,變化如此之快呀,五個、六個、七個演員呢?看來不可再強(qiáng)攻,否則就…,還是智取吧…
          再應(yīng)用表格吧,記得書上有這樣的例子,老師也曾示范過,它能更加清楚地反映其中的數(shù)字規(guī)律呢:
          演員的個數(shù)1234
          可能有的變換數(shù)12624

          (1)你知道這7個舞蹈演員面對觀眾一共會有幾種隊列變換嗎?說說你的理由.
          (2)請你先仔細(xì)體會小華的解題策略,然后再探索:220的末位數(shù)字是多少?說說你是怎樣想的.例如:25的末位數(shù)字是5;2043的末位數(shù)字是3.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          小華看著電視里的舞蹈節(jié)目:七個身穿不同民族服裝的舞蹈演員正在面對觀眾進(jìn)行隊列變換,他陷入了沉思:這7個演員面對觀眾一共會有幾種隊列變換呢?…為了解決這一問題,他是這樣思考和探索的:
          ①若只有一個演員A,那就只有隊列變換A,共1種;
          ②若有二個演員A、B,那就有隊列變換:AB和BA,共2種;
          ③若有三個演員A、B、C,那就有隊列變換:ABC、ACB、BAC、BCA、CAB、CBA,共6種;
          ④若有四個演員A、B、C、D,那就有隊列變換(小華把這四個字母在紙上不停的變換順序地排列著、寫著)…數(shù)數(shù)看,哇!有24種,變化如此之快呀,五個、六個、七個演員呢?看來不可再強(qiáng)攻,否則就…,還是智取吧…
          通過查閱資料,小華發(fā)現(xiàn)了如下的材料:
          材料:從m個人中選出n人排成一列的所有排列方法總數(shù)(下均簡稱排列數(shù))記為A
           nm
          =m×(m-1)×(m-2)×…×(m-n+1),特別地當(dāng)m=n時即從m個人中選出m個人進(jìn)行全排列為A
           mm
          =m×(m-1)×(m-2)×…×2×1
          再應(yīng)用表格吧,記得書上有這樣的例子,老師也曾示范過,它能更加清楚地反映其中的數(shù)字規(guī)律呢?
          演員的個數(shù) 1 2 3 4
          可能有的變換數(shù) 1 2 6 24
          (1)求A
           25
          和A
           33
          的值?
          (2)計算這7個舞蹈演員面對觀眾一共會有幾種隊列變換?
          (3)6個人排成一列,其中甲排最前面,同時乙排最后面的概率是多少?

          查看答案和解析>>

          同步練習(xí)冊答案