日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若點B在數(shù)軸上和1對應(yīng)的點相距
          2
          個單位,則點B對應(yīng)的實數(shù)為
          1-
          2
          或1+
          2
          1-
          2
          或1+
          2
          分析:分點B在1的左邊與右邊兩種情況解答.
          解答:解:點B在1的左邊時,點B對應(yīng)的數(shù)是1-
          2
          ,
          點B在1的右邊時,點B對應(yīng)的數(shù)是1+
          2
          ,
          綜上所述,點B對應(yīng)的實數(shù)為1-
          2
          或1+
          2

          故答案為:1-
          2
          或1+
          2
          點評:本題考查了實數(shù)與數(shù)軸的關(guān)系,要注意分兩種情況討論求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          14、解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊,若x對應(yīng)點在1的右邊,由圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3.

          參考閱讀材料,解答下列問題:
          (1)方程|x+3|=4的解為
          1和-7

          (2)解不等式|x-3|+|x+4|≥9;
          (3)若|x-3|+|x+4|≤a對任意的x都成立,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          28、閱讀下列材料:
          我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;
          這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應(yīng)點之間的距離;
          在解題中,我們會常常運用絕對值的幾何意義:
          例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的x=±2;
          例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
          例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊.若x對應(yīng)點在1的右邊,如圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
          參考閱讀材料,解答下列問題:
          (1)方程|x+3|=4的解為
          1或-7
          ;
          (2)解不等式|x-3|+|x+4|≥9;
          (3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:四川省中考真題 題型:解答題

          閱讀下列材料:
          我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;
          這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應(yīng)點之間的距離;
          在解題中,我們會常常運用絕對值的幾何意義:
          例1:解方程|x|=2,容易得出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的x=±2;
          例2:解不等式|x-1|>2,如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應(yīng)的數(shù)為-1,3,
          則|x-1|>2的解為x<-1或x>3;
          例3:解方程|x-1|+|x+2|=5,由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值,在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊,若x對應(yīng)點在1的右邊,如圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3。
          參考閱讀材料,解答下列問題:

          (1)方程|x+3|=4的解為____;
          (2)解不等式|x-3|+|x+4|≥9;
          (3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀下列材料:

            我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離;即,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;

          這個結(jié)論可以推廣為表示在數(shù)軸上,對應(yīng)點之間的距離;

          例1 解方程,容易看出,在數(shù)軸下與原點距離為2點的對應(yīng)數(shù)為±2,即該方程的解為x=±2

          例2 解不等式▏x-1▏>2,如圖,在數(shù)軸上找出▏x-1▏=2的解,即到1的距離為2的點對應(yīng)的數(shù)為-1、3,則▏x-1▏>2的解為x<-1或x>3

          例3 解方程。由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1

          和-2的距離之和為5的點對應(yīng)的x的值。在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊,若x對應(yīng)點在1的右邊,由圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3

          參考閱讀材料,解答下列問題:

          (1)方程的解為          

          (2)解不等式≥9;

          (3)若≤a對任意的x都成立,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年安徽省滁州市鳳陽縣城西中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          閱讀下列材料:
          我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;

          這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應(yīng)點之間的距離;
          在解題中,我們會常常運用絕對值的幾何意義:
          例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的x=±2;
          例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
          例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊.若x對應(yīng)點在1的右邊,如圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
          參考閱讀材料,解答下列問題:
          (1)方程|x+3|=4的解為______;
          (2)解不等式|x-3|+|x+4|≥9;
          (3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案