日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某課題組在探究“泵站問題”時抽象出數(shù)學(xué)模型:
          直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。夥ǎ鹤鼽cA關(guān)于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.
          請利用上述模型解決下列問題:
          (1)幾何應(yīng)用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為
           
          ;
          (2)幾何拓展:如圖2,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一點M、N使BM+MN的值最小,求這個最小值;
          (3)代數(shù)應(yīng)用:求代數(shù)式
          x2+1
          +
          (4-x)2+4
          (0≤x≤4)的最小值.
          精英家教網(wǎng)精英家教網(wǎng)
          分析:(1)本題要在AC上找一點P,使PB+PE的值最小.設(shè)點B關(guān)于AC的對稱點為B′,使PB+PE的值最小就是使PB′+PE的值最小.
          (2)設(shè)點B關(guān)于AC的對稱點為B′,根據(jù)垂線段最短及兩點之間,線段最短可知當(dāng)B′、M、N三點共線且B′N⊥AB時BM+MN的值最。
          (3)根據(jù)兩點間距離公式,可知本題即求點P(x,0)(0≤x≤4)到點A(0,1)和點B(4,2)的距離之和的最小值,在平面直角坐標(biāo)系中畫出圖形,即可求解.
          解答:解:(1)作點B關(guān)于AC的對稱點B′,連接B′E交AC于P,此時PB+PE的值最小,連接AB′.
          精英家教網(wǎng)
          ∵∠B′AC=∠BAC=45°,∴∠B′AB=90°.
          又∵AB′=AB=
          AC2+BC2
          =
          22+22
          =2
          2
          ,AE=
          1
          2
          AB=
          2
          ,
          ∴PB+PE的最小值=B′E=
          BA2+AE2
          =
          (2
          2
          )
          2
          +(
          2
          )
          2
          =
          10


          (2)作點B關(guān)于AC的對稱點B′,過B′作B′N⊥AB于N,交AC于M.
          此時BM+MN的值最。瓸M+MN=B′N.
          理由:如圖1,在AC上任取一點M1(不與點M重合),
          在AB上任取一點N1,連接B′M1、BM1、M1N1、B′N1
          精英家教網(wǎng)
          ∵點B′與點B關(guān)于AC對稱,
          ∴BM1=B′M1,
          ∴BM1+M1N1=B′M1+M1N1>B′N1
          又∵B′N1>B′N,BM+MN=B′N,
          ∴BM1+M1N1>BM+MN.
          計算:如圖2
          精英家教網(wǎng)
          ∵點B′與點B關(guān)于AC對稱,
          ∴AB′=AB,
          又∵∠BAC=30°,
          ∴∠B′AB=60°,
          ∴△B′AB是等邊三角形.
          ∴B′B=AB=2,∠B′BN=60°.
          又∵B′N⊥AB,
          ∴B′N=B′B•sin60°=
          3


          (3)構(gòu)造圖形如圖所示:
          精英家教網(wǎng)
          在直角坐標(biāo)系中,設(shè)點A(0,1)、B(4,2)、P(x,0)(0≤x≤4).
          那么PA+PB=
          x2+1
          +
          (4-x)2+4

          所求
          x2+1
          +
          (4-x)2+4
          的最小值就是求PA+PB的最小值.
          作點A關(guān)于x軸的對稱點A′,過A′作y軸的垂線,過點Bx軸的垂線,兩垂線交于點C.
          則A′C=4,BC=3,A′B=
          AC2+BC2
          =
          42+32
          =5

          所求
          x2+1
          +
          (4-x)2+4
          的最小值是5.
          點評:此題主要考查軸對稱--最短路線問題.解這類問題的關(guān)鍵是將實際問題抽象或轉(zhuǎn)化為數(shù)學(xué)模型,把兩條線段的和轉(zhuǎn)化為一條線段.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年福建省莆田市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

          某課題組在探究“泵站問題”時抽象出數(shù)學(xué)模型:
          直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。夥ǎ鹤鼽cA關(guān)于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.
          請利用上述模型解決下列問題:
          (1)幾何應(yīng)用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年福建省莆田市初中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

          (2010•莆田質(zhì)檢)某課題組在探究“泵站問題”時抽象出數(shù)學(xué)模型:
          直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。夥ǎ鹤鼽cA關(guān)于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.
          請利用上述模型解決下列問題:
          (1)幾何應(yīng)用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為______

          查看答案和解析>>

          同步練習(xí)冊答案