日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)O在原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)C在第一象限.
          (1)直接寫出點(diǎn)C的坐標(biāo);
          (2)將?ABCO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點(diǎn)D與點(diǎn)O重合).FG與邊AB、x軸分別交于點(diǎn)Q、點(diǎn)P.設(shè)此時(shí)旋轉(zhuǎn)前后兩個(gè)平行四邊形重疊部分的面積為S0,求S0的值;
          (3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動(dòng)的過程中,設(shè)動(dòng)點(diǎn)D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫出結(jié)果)
          (1)C(2,2);

          (2)∵A(-2,0),B(0,2)
          ∴OA=OB=2
          ∴∠BAO=∠ABO=45°
          ∵?EFGD由?ABCO旋轉(zhuǎn)而成
          ∴DG=OA=2,∠G=∠BAO=45°
          ∵?EFGD
          ∴FGDE
          ∴∠FPA=∠EDA=90°
          在Rt△POG中,OP=OG•sin45°=
          2

          ∵∠AQP=90°-∠BAO=45°
          ∴PQ=AP=OA-OP=2-
          2

          S0=
          1
          2
          (PQ+OB)•OP=
          1
          2
          (2-
          2
          +2)•
          2
          =2
          2
          -1.

          (3)
          當(dāng)?DEFG運(yùn)動(dòng)到點(diǎn)F在AB上時(shí),如圖①,t=2
          2
          -2
          ①當(dāng)0<t≤2
          2
          -2時(shí),如圖②,S=-t2+
          2
          t+2
          2
          -1;
          ②當(dāng)2
          2
          -2<t≤
          2
          時(shí),如圖③,S=-
          1
          2
          t2+4
          2
          -3;
          ③當(dāng)
          2
          <t≤2時(shí),如圖④,S=-
          2
          t+4
          2
          -2.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四邊形ABCO是矩形,點(diǎn)A(3,0),B(3,4),動(dòng)點(diǎn)M、N分別從點(diǎn)O、B出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)N作NPOC,交AC于點(diǎn)P,連接MP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒,△MPA的面積為S.
          (1)求點(diǎn)P的坐標(biāo).(用含x的代數(shù)式表示)
          (2)寫出S關(guān)于x的函數(shù)關(guān)系式,并求出S的最大值.
          (3)當(dāng)△APM與△ACO相似時(shí),求出點(diǎn)P的坐標(biāo).
          (4)△PMA能否成為等腰三角形?如能,直接寫出所有點(diǎn)P的坐標(biāo);如不能,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個(gè)有趣的數(shù)學(xué)問題--將軍飲馬問題:
          如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營(yíng).請(qǐng)問怎樣走才能使總的路程最短?
          做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長(zhǎng)線上,取B關(guān)于河岸的對(duì)稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
          (1)觀察發(fā)現(xiàn)
          再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
          作點(diǎn)B關(guān)于EF的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為______.
          (2)實(shí)踐運(yùn)用
          如圖3,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動(dòng),求BP+AP的最小值.
          (3)拓展遷移
          如圖4,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
          ①求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
          ②在拋物線的對(duì)稱軸直線x=1上找到一點(diǎn)M,使△ACM周長(zhǎng)最小,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo)與△ACM周長(zhǎng)最小值.(結(jié)果保留根號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為x=1,B(3,0),C(0,-3),
          (1)求二次函數(shù)y=ax2+bx+c的解析式;
          (2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
          (3)平行于x軸的一條直線交拋物線于M、N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)拋物線y=ax2+bx+c與x軸交于兩個(gè)不同的點(diǎn)A(-l,0)、B(4,0),與y軸交于點(diǎn)C(0,2).
          (1)求拋物線的解析式:
          (2)問拋物線上是否存在一點(diǎn)M,使得S△ABM=2S△ABC?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
          (3)已知點(diǎn)D(1,n)在拋物線上,過點(diǎn)A的直線y=-x-1交拋物線于另一點(diǎn)E.
          ①求tan∠ABD的值:
          ②若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          下表給出了一個(gè)二次函數(shù)的一些取值情況:
          x…024
          y…3-13
          (1)求這個(gè)二次函數(shù)的解析式,并求出其圖象與x軸的交點(diǎn)坐標(biāo);
          (2)請(qǐng)?jiān)谌鐖D所示的坐標(biāo)系中畫出這個(gè)二次函數(shù)的圖象;
          (3)根據(jù)其圖象寫出x取何值時(shí),y>0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,斜坡PQ的坡度i=1:
          3
          ,在坡面上點(diǎn)O處有一根1m高且垂直于水平面的水管OA,頂端A處有一旋轉(zhuǎn)式噴頭向外噴水,水流在各個(gè)方向沿相同的拋物線落下,水流最高點(diǎn)M比點(diǎn)A高出1m,且在點(diǎn)A測(cè)得點(diǎn)M的仰角為30°,以O(shè)點(diǎn)為原點(diǎn),OA所在直線為y軸,過O點(diǎn)垂直于OA的直線為x軸建立直角坐標(biāo)系.設(shè)水噴到斜坡上的最低點(diǎn)為B,最高點(diǎn)為C.
          (1)寫出A點(diǎn)的坐標(biāo)及直線PQ的解析式;
          (2)求此拋物線AMC的解析式;
          (3)求|xC-xB|;
          (4)求B點(diǎn)與C點(diǎn)間的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=ax2+bx+c的頂點(diǎn)P的坐標(biāo)為(1,-
          4
          3
          3
          ),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C(0,-
          3
          ).
          (1)求拋物線的表達(dá)式.
          (2)把△ABC繞AB的中點(diǎn)E旋轉(zhuǎn)180°,得到四邊形ADBC.判斷四邊形ADBC的形狀,并說明理由.
          (3)試問在線段AC上是否存在一點(diǎn)F,使得△FBD的周長(zhǎng)最?若存在,請(qǐng)寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          為了順應(yīng)市場(chǎng)要求,某市電子玩具制造公司技術(shù)部研制開發(fā)一種新產(chǎn)品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤(rùn)s(萬元)與銷售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
          (1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤(rùn)s(萬元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
          (2)求截止到幾月末公司累積利潤(rùn)可達(dá)到6萬元?
          (3)求第9個(gè)月公司所獲利潤(rùn)是多少萬元?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案