日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC的邊BC在y軸的正半軸上,點(diǎn)A在x軸的正半軸上,點(diǎn)C的坐標(biāo)為(0,8),將△ABC沿直線AB折疊,點(diǎn)C落在x軸的負(fù)半軸D(﹣4,0)處.

          (1)求直線AB的解析式;
          (2)點(diǎn)P從點(diǎn)A出發(fā)以每秒4 個(gè)單位長(zhǎng)度的速度沿射線AB方向運(yùn)動(dòng),過點(diǎn)P作PQ⊥AB,交x軸于點(diǎn)Q,PR∥AC交x軸于點(diǎn)R,設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t(秒),線段QR長(zhǎng)為d,求d與t的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

          (3)在(2)的條件下,點(diǎn)N是射線AB上一點(diǎn),以點(diǎn)N為圓心,同時(shí)經(jīng)過R、Q兩點(diǎn)作⊙N,⊙N交y軸于點(diǎn)E,F(xiàn).是否存在t,使得EF=RQ?若存在,求出t的值,并求出圓心N的坐標(biāo);若不存在,說明理由.

          【答案】
          (1)

          解:∵C(0,8),D(﹣4,0),

          ∴OC=8,OD=4,

          設(shè)OB=a,則BC=8﹣a,

          由折疊的性質(zhì)可得:BD=BC=8﹣a,

          在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2

          則(8﹣a)2=a2+42,

          解得:a=3,

          則OB=3,

          則B(0,3),

          tan∠ODB= = ,

          由折疊的性質(zhì)得:∠ADB=∠ACB,

          則tan∠ACB=tan∠ODB= ,

          在Rt△AOC中,∠AOC=90°,tan∠ACB= = ,

          則OA=6,

          則A(6,0),

          設(shè)直線AB的解析式為:y=kx+b,

          ,

          解得:

          故直線AB的解析式為:y=﹣ x+3


          (2)

          解:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,

          則AB= =3 ,tan∠BAO= = ,cos∠BAO= = ,

          在Rt△PQA中,∠APQ=90°,AP=4 t,

          則AQ= =10t,

          ∵PR∥AC,

          ∴∠APR=∠CAB,

          由折疊的性質(zhì)得:∠BAO=∠CAB,

          ∴∠BAO=∠APR,

          ∴PR=AR,

          ∵∠RAP+∠PQA=∠APR+∠QPR=90°,

          ∴∠PQA=∠QPR,

          ∴RP=RQ,

          ∴RQ=AR,

          ∴QR= AQ=5t,

          即d=5t;


          (3)

          解:過點(diǎn)分別作NT⊥RQ于T,NS⊥EF于S,

          ∵EF=QR,

          ∴NS=NT,

          ∴四邊形NTOS是正方形,

          則TQ=TR= QR= t,

          ∴NT= AT= (AQ﹣TQ)= (10t﹣ t)= t,

          分兩種情況,

          若點(diǎn)N在第二象限,則設(shè)N(n,﹣n),

          點(diǎn)N在直線y=﹣ x+3上,

          則﹣n=﹣ n+3,

          解得:n=﹣6,

          故N(﹣6,6),NT=6,

          t=6,

          解得:t= ;

          若點(diǎn)N在第一象限,設(shè)N(N,N),

          可得:n=﹣ n+3,

          解得:n=2,

          故N(2,2),NT=2,

          t=2,

          解得:t=

          故當(dāng)t= 或t= 時(shí),QR=EF,N(﹣6,6)或(2,2).


          【解析】(1)由C(0,8),D(﹣4,0),可求得OC,OD的長(zhǎng),然后設(shè)OB=a,則BC=8﹣a,在Rt△BOD中,由勾股定理可得方程:(8﹣a)2=a2+42 , 解此方程即可求得B的坐標(biāo),然后由三角函數(shù)的求得點(diǎn)A的坐標(biāo),再利用待定系數(shù)法求得直線AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的長(zhǎng),繼而求得∠BAO的正切與余弦,由PR∥AC與折疊的性質(zhì),易證得RQ=AR,則可求得d與t的函數(shù)關(guān)系式;(3)首先過點(diǎn)分別作NT⊥RQ于T,NS⊥EF于S,易證得四邊形NTOS是正方形,然后分別從點(diǎn)N在第二象限與點(diǎn)N在第一象限去分析求解即可求得答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).

          (1)點(diǎn)B表示的數(shù)是_________________;

          (2)若點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是________;

          (3)若點(diǎn)A、B分別以每秒1個(gè)單位長(zhǎng)度、3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后,A、B、O三個(gè)點(diǎn)中有一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線段的中點(diǎn),求t的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)O為直線AB上一點(diǎn),將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.

          (1)如圖1,將三角板的一邊ON與射線OB重合,過點(diǎn)O在三角板的內(nèi)部,作射線OC,使∠NOC:∠MOC=2:1,求∠AOC的度數(shù);

          (2)如圖2,將三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度到圖2的位置,過點(diǎn)O在三角板MON的內(nèi)部作射線OC,使得OC恰好是∠MOB對(duì)的角平分線,此時(shí)∠AOM∠NOC滿足怎樣的數(shù)量關(guān)系?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)為( ,0)、(3 ,0)、(0,5),點(diǎn)D在第一象限,且∠ADB=60°,則線段CD的長(zhǎng)的最小值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市今年的信息技術(shù)結(jié)業(yè)考試,采用學(xué)生抽簽的方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生先在三個(gè)筆試題(題簽分別用代碼B1、B2、B3表示)中抽取一個(gè),再在三個(gè)上機(jī)題(題簽分別用代碼J1、J2、J3表示)中抽取一個(gè)進(jìn)行考試.小亮在看不到題簽的情況下,分別從筆試題和上機(jī)題中隨機(jī)地抽取一個(gè)題簽.
          (1)用樹狀圖或列表法表示出所有可能的結(jié)果;
          (2)求小亮抽到的筆試題和上機(jī)題的題簽代碼的下標(biāo)(例如“B1”的下標(biāo)為“1”)為一個(gè)奇數(shù)一個(gè)偶數(shù)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】

          1)寫出數(shù)軸上A、B兩點(diǎn)表示的數(shù);

          2)動(dòng)點(diǎn)PQ分別從A、C同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒,t為何值時(shí),原點(diǎn)O、與P、Q三點(diǎn)中,有一點(diǎn)恰好是另兩點(diǎn)所連線段的中點(diǎn).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

          (1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使點(diǎn)NOC的反向延長(zhǎng)線上,請(qǐng)直接寫出圖中∠MOB的度數(shù);

          (2)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3,使一邊OM∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù)

          (3)將圖1中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖4,使ON∠AOC的內(nèi)部,請(qǐng)?zhí)骄?/span>∠AOM∠NOC之間的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知O的半徑為4,OA為半徑,CD為弦,OACD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OAP,使AP=OA,連接PC.

          (1)求CD的長(zhǎng);

          (2)求證:PCO的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解下列方程:

          (1)2(100.5y)=﹣(1.5y+2)

          (2)(x5)3(x5)

          (3)1

          (4)x(x9)[x+(x9)]

          (5) -=0.5x+2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案