日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知四邊形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN繞B點(diǎn)旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長(zhǎng)線)于E,F(xiàn). 當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE=CF時(shí)(如圖1),易證AE+CF=EF;
          當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE≠CF時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.

          【答案】解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF, 在△ABE和△CBF中,
          ,
          ∴△ABE≌△CBF(SAS);
          ∴∠ABE=∠CBF,BE=BF;
          ∵∠ABC=120°,∠MBN=60°,
          ∴∠ABE=∠CBF=30°,
          ∴AE= BE,CF= BF;
          ∵∠MBN=60°,BE=BF,
          ∴△BEF為等邊三角形;
          ∴AE+CF= BE+ BF=BE=EF;
          圖2成立,圖3不成立.
          證明圖2.
          延長(zhǎng)DC至點(diǎn)K,使CK=AE,連接BK,

          在△BAE和△BCK中,

          則△BAE≌△BCK,
          ∴BE=BK,∠ABE=∠KBC,
          ∵∠FBE=60°,∠ABC=120°,
          ∴∠FBC+∠ABE=60°,
          ∴∠FBC+∠KBC=60°,
          ∴∠KBF=∠FBE=60°,
          在△KBF和△EBF中,

          ∴△KBF≌△EBF,
          ∴KF=EF,
          ∴KC+CF=EF,
          即AE+CF=EF.
          圖3不成立,
          AE、CF、EF的關(guān)系是AE﹣CF=EF.

          【解析】根據(jù)已知可以利用SAS證明△ABE≌△CBF,從而得出對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等,從而得出∠ABE=∠CBF=30°,△BEF為等邊三角形,利用等邊三角形的性質(zhì)及邊與邊之間的關(guān)系,即可推出AE+CF=EF. 同理圖2可證明是成立的,圖3不成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)P在第二象限,并且到x軸的距離為1,到y(tǒng)軸的距離為2.則點(diǎn)P的坐標(biāo)是(  )

          A. (1、2) B. (﹣1,2) C. (2,1) D. (﹣2,1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】正方形具有而菱形不具有的性質(zhì)是( 。

          A. 對(duì)角線互相平分 B. 對(duì)角線相等

          C. 對(duì)角線平分一組對(duì)角 D. 對(duì)角線互相垂直

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,△ABE和△ADC是△ABC分別沿著AB,AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為(
          A.80°
          B.100°
          C.60°
          D.45°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知a+b=3,a﹣b=5,則代數(shù)式a2﹣b2的值是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】?jī)蓚(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽像出的幾何圖形,B,C,E在同一條直線上,連結(jié)DC.
          (1)請(qǐng)找出圖2中的全等三角形,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的宇母);
          (2)證明:DC⊥BE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列圖形中不能單獨(dú)進(jìn)行鑲嵌的是( 。

          A. 等腰三角形 B. 平行四邊形 C. 正五邊形 D. 正六邊形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是用棋子擺成的“H”字,第一個(gè)“H”有7個(gè)棋子

          (1)擺成第二個(gè)“H”字需要幾個(gè)棋子?第三個(gè)“H”字需要幾個(gè)棋子?
          (2)按這樣的規(guī)律擺下去,擺成第10個(gè)“H”字需要幾個(gè)棋子,第n個(gè)呢?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某玩具店購(gòu)進(jìn)一種兒童玩具,計(jì)劃每個(gè)售價(jià)36元,能盈利80%,在銷售中出現(xiàn)了滯銷,于是先后兩次降價(jià),售價(jià)降為25元.
          (1)求這種玩具的進(jìn)價(jià);
          (2)求平均每次降價(jià)的百分率(精確到0.1%).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案