日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (14分)已知拋物線yax2bxc(a≠0)經(jīng)過A(-2,0)、B(0,1)兩點(diǎn),且對稱軸是y軸.經(jīng)過點(diǎn)C(0,2)的直線lx軸平行,O為坐標(biāo)原點(diǎn),P、Q為拋物線yax2bxc(a≠0)上的兩動(dòng)點(diǎn).

          【小題1】(1) 求拋物線的解析式;
          【小題2】(2) 以點(diǎn)P為圓心,PO為半徑的圓記為⊙P,判斷直線l與⊙P的位置關(guān)系,并證明你的結(jié)論;
          【小題3】(3) 設(shè)線段PQ=9,GPQ的中點(diǎn),求點(diǎn)G到直線l距離的最小值.



          【小題1】解:(1) ∵拋物線yax2bxc的對稱軸是y軸,∴b=0.    
          ∵拋物線yax2bxc經(jīng)過點(diǎn)A(-2,0)、B(0,1)兩點(diǎn),
          c=1,a=-,    ……………………………………3分
          ∴所求拋物線的解析式為y=-x2+1.
          【小題2】(2) 設(shè)點(diǎn)P坐標(biāo)為(p,-p2+1),
          如圖,過點(diǎn)PPHl,垂足為H,
          PH=2-(-p2+1)=p2+1,        …………………6分
          OP==-p2+1,    ………………8分
          OPPH,
          ∴直線l與以點(diǎn)P為圓心,PO長為半徑的圓相切.
          【小題3】(3) 如圖,分別過點(diǎn)P、Q、Gl的垂線,垂足分別是DE、F.連接EG并延長交DP的延長線于點(diǎn)K,
          GPQ的中點(diǎn),
          ∴易證得△EQG≌△KPG,
          EQPK,        ………………………………………11分
          由(2)知拋物線y=-x2+1上任意一點(diǎn)到原點(diǎn)的距離等于該點(diǎn)到直線ly=2的距離,
          EQOQDPOP,   …………………………………12分
          FGDK=(DPPK)=(DPEQ)=(OPOQ), ……13分
          ∴只有當(dāng)點(diǎn)P、Q、O三點(diǎn)共線時(shí),線段PQ的中點(diǎn)G到直線l的距離GF最小,
          PQ=9,
          GF≥4.5,即點(diǎn)G到直線l距離的最小值是4.5.      …………………………………14分
          (若用梯形中位線定理求解扣1分)解析:
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

          經(jīng)過點(diǎn)(0,4).

          (1)       求m的值;

          (2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

          ① 試求平移后的拋物線的解析式;

          ② 試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

          經(jīng)過點(diǎn)(0,4).

          (1)       求m的值;

          (2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

          ① 試求平移后的拋物線的解析式;

          ② 試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

          (2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))
          經(jīng)過點(diǎn)(0,4).
          (1)      求m的值;
          (2)      將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.
          ① 試求平移后的拋物線的解析式;
          ② 試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

          (2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

          經(jīng)過點(diǎn)(0,4).

          (1)       求m的值;

          (2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

          ①  試求平移后的拋物線的解析式;

          ②  試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古烏蘭察布卷)數(shù)學(xué) 題型:解答題

          (2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

          經(jīng)過點(diǎn)(0,4).

          (1)       求m的值;

          (2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個(gè)條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

          ①  試求平移后的拋物線的解析式;

          ②  試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

           

          查看答案和解析>>

          同步練習(xí)冊答案