日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=4x2-7x+4與直線y=x+b相交于A、B兩點(diǎn).
          (1)求b的取值范圍;
          (2)當(dāng)AB=2時(shí),求b的值;
          (3)設(shè)坐標(biāo)原點(diǎn)為O,在(2)的條件下,求△AOB的面積.
          (1)根據(jù)題意,得4x2-7x+4=x+b.(1分)
          整理,得4x2-8x+(4-b)=0.(2分)
          ∵拋物線與直線有兩個(gè)交點(diǎn),
          ∴△=(-8)2-16(4-b)=16b>0.
          ∴b>0(3分).

          (2)不妨設(shè)A(x1,y1)B(x2,y2),x1<x2,如圖
          ∵x1、x2是方程4x2-8x+(4-b)=0的兩根
          x1+x2=2,x1x2=
          4-b
          4
          (4分)
          |x2-x1|=
          (x1+x2)2-4x1x2
          =
          22-(4-b)
          =
          b
          (5分)
          ∴y1=x1+b,y2=x2+b
          ∴y2-y1=x2-x1(6分)
          AB=
          (x2-x1)2+(y2-y1)2
          =
          2
          |x2-x1|=
          2b
          =2

          ∴b=2.(7分)

          (3)由(2)可知,直線的解析式為y=x+2,設(shè)直線與y軸交于C點(diǎn),
          則C點(diǎn)的坐標(biāo)為(0,2),OC=2,易知x2>x1>0.
          S△AOC=
          1
          2
          OC•x1
          ,S△BOC=
          1
          2
          OC•x2
          (8分)
          S△AOB=S△BOC-S△AOC=
          1
          2
          OC•(x2-x1)
          (9分)
          =
          1
          2
          ×2|x2-x1|=|x2-x1|=
          b

          S△AOB=
          2
          (10分).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx-3a經(jīng)過點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對稱軸MN對稱.
          (1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
          (2)求證:四邊形ABCD是直角梯形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,已知直線y=-
          1
          2
          x與拋物線y=-
          1
          4
          x2+6交于A,B兩點(diǎn).
          (1)求A,B兩點(diǎn)的坐標(biāo);
          (2)求線段AB的垂直平分線的解析式;
          (3)如圖2,取與線段AB等長的一根橡皮筋,端點(diǎn)分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動(dòng),動(dòng)點(diǎn)P將與A,B構(gòu)成無數(shù)個(gè)三角形,這些三角形中是否存在一個(gè)面積最大的三角形?如果存在,求出最大面積,并指出此時(shí)P點(diǎn)的坐標(biāo);如果不存在,請簡要說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
          (1)求這個(gè)二次函數(shù)的關(guān)系解析式;
          (2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
          (3)在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
          (1)求拋物線解析式;
          (2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
          (3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)的頂點(diǎn)C的橫坐標(biāo)為1,一次函數(shù)y=kx+2的圖象與二次函數(shù)的圖象交于A、B兩點(diǎn),且A點(diǎn)在y軸上,以C為圓心,CA為半徑的⊙C與x軸相切,
          (1)求二次函數(shù)的解析式;
          (2)若B點(diǎn)的橫坐標(biāo)為3,過拋物線頂點(diǎn)且平行于x軸的直線為l,判斷以AB為直徑的圓與直線l的位置關(guān)系;
          (3)在滿足(2)的條件下,把二次函數(shù)的圖象向右平移7個(gè)單位,向下平移t個(gè)單位(t>2)的圖象與x軸交于E、F兩點(diǎn),當(dāng)t為何值時(shí),過B、E、F三點(diǎn)的圓的面積最?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,矩形ABCD中,AB=8,BC=10,點(diǎn)P在矩形的邊DC上由D向C運(yùn)動(dòng).沿直線AP翻折△ADP,形成如下四種情形.設(shè)DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

          (1)如圖丁,當(dāng)點(diǎn)P運(yùn)動(dòng)到與C重合時(shí),求重疊部分的面積y;
          (2)如圖乙,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),翻折△ADP后,點(diǎn)D恰好落在BC邊上這時(shí)重疊部分的面積y等于多少?
          (3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即tan2α=
          2tanα
          1-(tanα)2
          (α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
          (提示:在圖丙中可設(shè)∠DAP=a)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某建筑物的窗戶如圖所示,它的上半部是半圓,下半部是矩形,制造窗框的材料總長(圖中所有黑線的長度和)為10米.當(dāng)x等于多少米時(shí),窗戶的透光面積最大,最大面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          草莓是對薔薇科草莓屬植物的通稱,屬多年生草本植物,草莓的外觀呈心形,鮮美紅嫩,果肉多汁,含有特殊的濃郁水果芳香,草莓營養(yǎng)價(jià)值高,含豐富維生素C,有幫助消化的功效,與此同時(shí),草莓還可以鞏固齒齦,清新口氣,潤澤喉部.我市某草莓種植基地去年第x個(gè)月種植草莓的畝數(shù)y(畝),與x(1≤x≤12,且x為整數(shù))之間的函數(shù)關(guān)系如表:
          月份x123456789101112
          13種植某數(shù)y6810121416161616161616
          每畝收益z(元)與月份x(月)(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢:
          (1)請觀察題中的表格,用所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出z與x之間滿足的函數(shù)關(guān)系式;
          (2)該草莓種植基地在去年哪個(gè)月的總收益最大,求出這個(gè)最大收益;
          (3)今年1月份,該草莓種植基地加大規(guī)模,種植草莓比去年12月份多4畝,每畝收益比去年12月份多a%,今年2月份,該草莓種植基地繼續(xù)加大規(guī)模,種植草莓比今年1月份多2a%,每畝收益比今年1月份多6元,若今年2月份該草莓種植基地總收益為672元,請你參考以下數(shù)據(jù),通過計(jì)算估算出a的整數(shù)值.(參考數(shù)據(jù):
          63
          =7.94,
          65
          =8.06,
          66
          =8.12)

          查看答案和解析>>

          同步練習(xí)冊答案