【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱為極點(diǎn);從點(diǎn)O出發(fā)引一條射線Ox稱為極軸;線段OM的長度稱為極徑.點(diǎn)M的極坐標(biāo)就可以用線段OM的長度以及從Ox轉(zhuǎn)動到OM的角度(規(guī)定逆時針方向轉(zhuǎn)動角度為正)來確定,即M(4,30°)或M(4,-330°)或M(4,390°)等,則下列說法錯誤的是( ).
A.點(diǎn)M關(guān)于x軸對稱點(diǎn)M1的極坐標(biāo)可以表示為M1(4,-30°)
B.點(diǎn)M關(guān)于原點(diǎn)O中心對稱點(diǎn)M2的極坐標(biāo)可以表示為M2(4,570°)
C.以極軸Ox所在直線為x軸建立如圖所示的平面直角坐標(biāo)系,則極坐標(biāo)M(4,30°)轉(zhuǎn)化為平面直角坐標(biāo)的坐標(biāo)為M(2,2)
D.把平面直角坐標(biāo)系中的點(diǎn)N(-4,4)轉(zhuǎn)化為極坐標(biāo),可表示為N(,135°)
【答案】C
【解析】
A、B選項,先根據(jù)對稱的性質(zhì)確定對稱點(diǎn)位置,再得出極坐標(biāo);C、D選項,過點(diǎn)M作x軸的垂線,根據(jù)勾股定理得出平面直角坐標(biāo)與極坐標(biāo)的關(guān)系.
A中,點(diǎn)與點(diǎn)M關(guān)于x軸對稱,則點(diǎn)
在第四象限,極坐標(biāo)為(4,-30°)
B中,點(diǎn)與點(diǎn)M關(guān)于原點(diǎn)對稱,則點(diǎn)
在第三象限,極坐標(biāo)為(4,(30+180)°),根據(jù)極坐標(biāo)的特點(diǎn),將角度加360°,結(jié)果不變,則
可表示為(4,(30+180+360)°),即(4,570°);
C中,如下圖,過點(diǎn)M作x軸的垂線
∵OM=4,∠MON=30°,∴在Rt△MON中,ON=2,MN=2,∴M(2
,2);
D中,如下圖,過點(diǎn)N作x軸的垂線
∵N(-4,4),∴NM=4,MO=4
∴∠NOM=45°,ON=4,∴∠NOX=135°
∴N(4,135°)
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小夏同學(xué)從家到學(xué)校有,
兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機(jī)選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時 頻數(shù) 公交車路線 | 總計 | ||||
59 | 151 | 166 | 124 | 500 | |
43 | 57 | 149 | 251 | 500 |
據(jù)此估計,早高峰期間,乘坐線路“用時不超過35分鐘”的概率為__________,若要在40分鐘之內(nèi)到達(dá)學(xué)校,應(yīng)盡量選擇乘坐__________(填
或
)線路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù),一次函數(shù)
,若方程
的兩根是
,
.
(1)求b、c的值;
(2)當(dāng)x滿足時,比較
與x的大小并說明理由;
(3)設(shè)點(diǎn)M的坐標(biāo)是,點(diǎn)P是拋物線
上的一個動點(diǎn),當(dāng)點(diǎn)P到點(diǎn)M的距離與到直線
的距離之和最小時,請直接寫出點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更好開展“課后延時”服務(wù),某校抽取了部分七年級學(xué)生,就課后活動項目進(jìn)行調(diào)查.學(xué)校根據(jù)學(xué)生前期統(tǒng)計給出了如下四個選項:“球類”、
“棋類”、
“計算機(jī)信息類”、
“其他”,并將最終調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中提供的信息,解決下列問題:
(1)本次調(diào)查共抽取了____名學(xué)生,扇形統(tǒng)計圖中,類所對應(yīng)的扇形圓心角大小為
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)已知選擇類的同學(xué)有兩位來自七(1)班,其余來自七(2)班,調(diào)查組準(zhǔn)備從選
類同學(xué)中任選兩位做細(xì)致分析求兩位同學(xué)來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組利用一棵古樹BH測量教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE為45°,此時教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測得教學(xué)樓頂端G的仰角∠GEF為60°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.計算教學(xué)樓CG的高.(結(jié)果精確到0.1,參考數(shù)據(jù):≈1.4,
≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,⊙O是△ABC的外接圓,AB=AC=10,BC=12,連接AO并延長交BC于點(diǎn)H.
(1)求外接圓⊙O的半徑;
(2)如圖2,點(diǎn)D是AH上(不與點(diǎn)A,H重合)的動點(diǎn),以CD,CB為邊,作平行四邊形CDEB,DE分別交⊙O于點(diǎn)N,交AB邊于點(diǎn)M.
①連接BN,當(dāng)BN⊥DE時,求AM的值;
②如圖3,延長ED交AC于點(diǎn)F,求證:NM·NF=AM·MB;
③設(shè)AM=x,要使-2
<0成立,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,拋物線y=ax2+bx+c過點(diǎn)A(﹣1,0),B(3,0),C(0,3),點(diǎn)P是直線BC上方拋物線上的一動點(diǎn),PE∥y軸,交直線BC于點(diǎn)E連接AP,交直線BC于點(diǎn) D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)AD=2PD時,求點(diǎn)P的坐標(biāo);
(3)求線段PE的最大值;
(4)當(dāng)線段PE最大時,若點(diǎn)F在直線BC上且∠EFP=2∠ACO,直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的周長是20,且
,
是
邊上的中點(diǎn),點(diǎn)
是
邊上的一個動點(diǎn),將
沿
折疊得到
,連接
,
,當(dāng)
是直角三角形時,
的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=-x2+(m-1) x+m (m為常數(shù)),其頂點(diǎn)為M.
(1)請判斷該函數(shù)的圖像與x軸公共點(diǎn)的個數(shù),并說明理由;
(2)當(dāng)-2≤m≤3時,求該函數(shù)的圖像的頂點(diǎn)M縱坐標(biāo)的取值范圍;
(3)在同一坐標(biāo)系內(nèi)兩點(diǎn)A(-1,-1)、B(1,0),△ABM的面積為S,當(dāng)m為何值時,S的面積最小?并求出這個最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com