日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•佛山)如圖,在Rt△ABC中,∠C=90°,M是AB的中點,AM=AN,MN∥AC.
          (1)求證:MN=AC;
          (2)如果把條件“AM=AN”改為“AM⊥AN”,其它條件不變,那么MN=AC不一定成立.如果再改變一個條件,就能使MN=AC成立.請你寫出改變的條件并說明理由.

          【答案】分析:(1)要證MN=AC,只需證四邊形ACMN為?,根據(jù)定義兩組對邊分別平行的四邊形時平行四邊形,而MN∥AC為已知,需證AN∥MC,可利用內(nèi)錯角相等,兩直線平行來求.
          (2)∵AM⊥AN,且MN∥AC,∴四邊形ACMN要為?,還少一組平行,若把M看做時RT△ABC斜邊高的垂足,則可證明CM∥AN,即可利用平行四邊形的定義證明.
          解答:證明:(1)【方法一】如圖,連接CM.
          在Rt△ABC中,∠C=90°,M是AB的中點,
          ∴CM=AM.
          ∴∠MAC=∠MCA.
          ∵AM=AN,
          ∴∠AMN=∠ANM.
          ∵MN∥AC,
          ∴∠CAM=∠AMN.
          ∴∠ACM=∠ANM.
          ∴∠CMA=∠MAN.
          ∴AN∥CM.
          ∴四邊形ACMN是平行四邊形.
          ∴MN=AC.
          【方法二】如圖,連接CM,
          證△ACM≌△MNA.
          ∴MN=AC.
          (2)把“M是AB的中點”改為“過C點作AB的垂線,垂足為M點”.
          理由是:易知CM∥AN,又MN∥AC,有四邊形ACMN是平行四邊形.
          (注:改“Rt△ABC”為“等腰Rt△ABC”,酌情給分)
          點評:此題主要考查了平行四邊形的定義以及判定,難易程度適中.熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對應(yīng)著一種性質(zhì),在應(yīng)用時應(yīng)注意它們的區(qū)別與聯(lián)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

          (2007•佛山)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系,y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
          (1)求拋物線的解析式;
          (2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
          (3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年廣東省佛山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•佛山)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系,y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
          (1)求拋物線的解析式;
          (2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
          (3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年廣東省佛山市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2007•佛山)如圖,△ABC內(nèi)接于⊙O,AD是⊙O的直徑,∠ABC=30°,則∠CAD=    度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年廣東省佛山市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2007•佛山)如圖,M,N,P,R分別是數(shù)軸上四個整數(shù)所對應(yīng)的點,其中有一點是原點,并且MN=NP=PR=1.?dāng)?shù)a對應(yīng)的點在M與N之間,數(shù)b對應(yīng)的點在P與R之間,若|a|+|b|=3,則原點是( )

          A.M或R
          B.N或P
          C.M或N
          D.P或R

          查看答案和解析>>

          同步練習(xí)冊答案