日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,點(diǎn)M是二次函數(shù)y=ax2(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0,),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個(gè)圓上,圓心Q的縱坐標(biāo)為

          (1)求a的值;

          (2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時(shí),求點(diǎn)M和點(diǎn)Q的坐標(biāo);

          (3)當(dāng)點(diǎn)M在第一象限時(shí),過(guò)點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.

          【答案】(1)y=x2;(2)M1(,),Q1,),M2,),Q2,);(3)詳見(jiàn)解析.

          【解析】

          試題分析:(1)設(shè)Q(m,),F(xiàn)(0,),由QO=QF,根據(jù)勾股定理列出方程即可求得a值;(2)設(shè)M(t,t2),Q(m,),根據(jù)KOM=KOQ,求出t、m的關(guān)系,根據(jù)QO=QM列出方程即可解決問(wèn)題.(3)設(shè)M(n,n2)(n>0),則N(n,0),F(xiàn)(0,),利用勾股定理求出MF即可解決問(wèn)題.

          試題解析:(1)圓心O的縱坐標(biāo)為,

          設(shè)Q(m,),F(xiàn)(0,),

          QO=QF,

          m2+(2=m2+(2,

          a=1,

          拋物線為y=x2

          (2)M在拋物線上,設(shè)M(t,t2),Q(m,),

          O、Q、M在同一直線上,

          KOM=KOQ

          =,

          m=

          QO=QM,

          m2+(2=(mt)2=(t22

          整理得到:t2+t4+t22mt=0,

          4t4+3t21=0,

          (t2+1)(4t21)=0,

          t1=,t2=,

          當(dāng)t1=時(shí),m1=,

          當(dāng)t2=時(shí),m2=

          M1(,),Q1,),M2,),Q2,).

          (3)設(shè)M(n,n2)(n>0),

          N(n,0),F(xiàn)(0,),

          MF===n2+,MN+OF=n2+,

          MF=MN+OF.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若規(guī)定收入為“+”,則-50元表示____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用科學(xué)記數(shù)法表示:0.0018=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校八年級(jí)(1)班男生有24人,女生有26人,從中任選一人是男生的事件是事件.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一次函數(shù)y=2x+4的圖象與y軸交點(diǎn)的坐標(biāo)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線與x軸、軸分別相交于點(diǎn)C、B,與直線相交于

          點(diǎn)A.

          (1)點(diǎn)B、點(diǎn)C和點(diǎn)A的坐標(biāo)分別是(0,   )、(  ,0)、(     );

          (2)求兩條直線與軸圍成的三角形的面積;

          (3)在坐標(biāo)軸上是否存在一點(diǎn)Q,使△OAQ的面積等于6,若存在請(qǐng)直接寫(xiě)出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】△OAB是以正多邊形相鄰的兩個(gè)頂點(diǎn)A,B與它的中心O為頂點(diǎn)的三角形,若△OAB的一個(gè)內(nèi)角為70°,則該正多邊形的邊數(shù)為.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABCDO,OE⊥AB

          1)若∠EOD=20°,求∠AOC的度數(shù);

          2)若∠AOC∠BOC=12,求∠EOD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】李先生在2015年11月第2周星期五股市收盤(pán)時(shí),以每股9元的價(jià)格買進(jìn)某公司的股票1000股,在11月第3周的星期一至星期五,該股票每天收盤(pán)時(shí)每股的漲跌(單位:元)情況如下表:

          注:表中記錄的數(shù)據(jù)為每天收盤(pán)價(jià)格與前一天收盤(pán)價(jià)格的變化量,星期一的數(shù)據(jù)是與上星期五收盤(pán)價(jià)格的變化量.

          (1)請(qǐng)你判斷在11月的第3周內(nèi),該股票價(jià)格收盤(pán)時(shí),價(jià)格最高的是哪一天?

          (2)在11月第3周內(nèi),求李先生購(gòu)買的股票每股每天平均的收盤(pán)價(jià)格.(結(jié)果精確到百分位)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案