日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過BC的中點D,且EF∥AB,若AB=2,則DE的長是( 。
          A、
          1
          2
          B、
          5
          -1
          2
          C、
          3
          2
          D、1
          分析:設(shè)AC與EF交于點G,由于EF∥AB,且D是BC中點,易得DG是△ABC的中位線,即DG=1;
          易知△CDG是等腰三角形,可過C作AB的垂線,交EF于M,交AB于N;然后證DE=FG,根據(jù)相交弦定理得BD•DC=DE•DF,而BD、DC的長易知,DF=1+DE,由此可得到關(guān)于DE的方程,即可求得DE的長.
          解答:精英家教網(wǎng)解:如圖.過C作CN⊥AB于N,交EF于M,則CM⊥EF.
          根據(jù)圓和等邊三角形的性質(zhì)知:CN必過點O.
          ∵EF∥AB,D是BC的中點,
          ∴DG是△ABC的中位線,即DG=
          1
          2
          AB=1;
          易知△CGD是等邊三角形,而CM⊥DG,則DM=MG;
          由于OM⊥EF,由垂徑定理得:EM=MF,故DE=GF.
          ∵弦BC、EF相交于點D,
          ∴BD•DC=DE•DF,即DE×(DE+1)=1;
          解得DE=
          5
          -1
          2
          (負值舍去).
          故選B.
          點評:此題主要考查了等邊三角形的性質(zhì)、垂徑定理、三角形中位線定理、相交弦定理等知識,能夠證得DE、GF的數(shù)量關(guān)系是解答此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
          求證:四邊形AMNE是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
          求:BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
          (1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
          (2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案