日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示,觀察圖2可知:與BC相等的線段是______,∠CAC′=______°。

          問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,

          拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由。

          (1)DA,90;(2)FQ=EP;證明如下;(3)HE=HF,理由如下.

          解析試題分析:①觀察圖形即可發(fā)現(xiàn)DA′=BC,A′C=AC,DC′=BA,所以△ABC≌△AC′D,即BC=DA、∠CAC′=90°可解題;
          ②由全等三角形△APE≌△BGA的對(duì)應(yīng)邊相等知,EP=AG;同理由全等三角形△FQA≌△AGC的對(duì)應(yīng)邊相等知FQ=AG,所以易證EP=FQ;
          ③過(guò)點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.根據(jù)全等三角形的判定和性質(zhì)即可解題.
          試題解析:①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,
          ∴∠CAC′=180°-∠C′AD-∠CAB=90°;
          ②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,
          ∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,
          又∵AF=AC,
          ∴△AFQ≌△CAG,
          ∴FQ=AG,
          同理EP=AG,
          ∴FQ=EP.
          ③HE=HF.
          理由:過(guò)點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.

          ∵四邊形ABME是矩形,
          ∴∠BAE=90°,
          ∴∠BAG+∠EAP=90°,
          又AG⊥BC,
          ∴∠BAG+∠ABG=90°,
          ∴∠ABG=∠EAP.
          ∵∠AGB=∠EPA=90°,
          ∴△ABG∽△EAP,
          ∴AG:EP=AB:EA.
          同理△ACG∽△FAQ,
          ∴AG:FQ=AC:FA.
          ∵AB=k•AE,AC=k•AF,
          ∴AB:EA=AC:FA=k,
          ∴AG:EP=AG:FQ.
          ∴EP=FQ.
          ∵∠EHP=∠FHQ,
          ∴Rt△EPH≌Rt△FQH.
          ∴HE=HF.
          考點(diǎn):(1)三角形全等的判定與性質(zhì);(2)相似三角形的判定與性質(zhì).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          小明對(duì)直角三角形很感興趣. △ABC中,∠ACB=90°,D是AB上任意一點(diǎn),連接DC,作DE⊥DC,EA⊥AC,DE與AE交于點(diǎn)E.請(qǐng)你跟著他一起解決下列問(wèn)題:

          (1)如圖1,若△ABC是等腰直角三角形,則DE,DC有什么數(shù)量關(guān)系?請(qǐng)給出證明.
          (2)如果換一個(gè)直角三角形,如圖2,∠CBA=30°,則DE,DC又有什么數(shù)量關(guān)系?請(qǐng)給出證明.
          (3)由(1)、(2)這兩種特殊情況,小明提出問(wèn)題:如果直角三角形ABC中,BC=mAC,那DE, DC有什么數(shù)量關(guān)系?請(qǐng)給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在正方形網(wǎng)格上有△ABC和△DEF.

          (1)求證:△ABC∽△DEF;
          (2)計(jì)算這兩個(gè)三角形的周長(zhǎng)比;
          (3)根據(jù)上面的計(jì)算結(jié)果,你有何猜想?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點(diǎn)M是AD的中點(diǎn),△MBC是等邊三角形.

          (1)求證:梯形ABCD是等腰梯形;
          (2)動(dòng)點(diǎn)P、Q分別在線段BC和MC上運(yùn)動(dòng),且∠MPQ=60°保持不變.設(shè)PC=x,MQ=y,求y與x的函數(shù)關(guān)系式;
          (3)在(2)中:
          ①當(dāng)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)到何處時(shí),以點(diǎn)P、M和點(diǎn)A、B、C、D中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?并指出符合條件的平行四邊形的個(gè)數(shù);
          ②當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°.

          (1)求證:△ABD∽△DCE;
          (2)若BD=3,CE=2,求△ABC的邊長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          (已知:如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開(kāi),折痕EF交AD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AF和CE。

          (1)求證:四邊形AFCE是菱形;
          (2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長(zhǎng);
          (3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說(shuō)明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點(diǎn),以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).

          (1)當(dāng)正方形的頂點(diǎn)F恰好落在對(duì)角線AC上時(shí),求BE的長(zhǎng);
          (2)將(1)問(wèn)中的正方形BEFG沿BC向右平移,記平移中的正方形BEFG為正方形B′EFG,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點(diǎn)M,連接B′D,B′M,DM.是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
          (3)在(2)問(wèn)的平移過(guò)程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長(zhǎng)線(如圖2)于點(diǎn)P.

          (1)當(dāng)點(diǎn)P在線段AB上時(shí),求證:△APQ∽△ABC;
          (2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,是一個(gè)照相機(jī)成像的示意圖.

          (1)如果像高M(jìn)N是35mm,焦距是50mm,拍攝的景物高度AB是4.9m,拍攝點(diǎn)離景物有多遠(yuǎn)?
          (2)如果要完整的拍攝高度是2m的景物,拍攝點(diǎn)離景物有4m,像高不變,則相機(jī)的焦距應(yīng)調(diào)整為多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案