日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等腰△ABC,按下列要求操作:
          (1)分別過B、C兩點(diǎn)畫三角形的兩條高BD、CE,垂足分別是D和E,標(biāo)出BD、CE的交點(diǎn)O;
          (2)度量點(diǎn)O到AB的距離:
          0.8
          0.8
          cm;(精確到0.1)
          (3)畫射線AO;
          (4)通過猜想和度量,寫出一條關(guān)于射線AO的結(jié)論:
          分析:(1)根據(jù)三角形高的作法作出高即可;
          (2)用刻度尺測量即可;
          (3)連接AO并延長即可;
          (4)根據(jù)等腰三角形的對稱性寫出即可.
          解答:解:(1)如圖所示,BD、CE即為所要求作的高;

          (2)0.8cm;

          (3)如圖所示,射線AO即為所要求作的射線;

          (4)關(guān)于射線AO成軸對稱,
          ∴射線AO平分∠BAC,
          AO⊥BC;
          AO平分∠EOD;
          AO平分∠BOC,
          AO平分線段BC.
          點(diǎn)評:本題考查了基本作圖,點(diǎn)到直線的距離,三角形的角平分線、中線和高,以及等腰三角形的對稱性,是基本組圖,比較簡單.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          25、已知:△ABC和△ADE均為等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按圖1放置,使點(diǎn)E在BC上,取CE的中點(diǎn)F,連接DF、BF.
          (1)探索DF、BF的數(shù)量關(guān)系和位置關(guān)系,并證明;
          (2)將圖1中△ADE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)45°,再連接CE,取CE的中點(diǎn)F(如圖2),問(1)中的結(jié)論是否仍然成立?證明你的結(jié)論;
          (3)將圖1中△ADE繞A點(diǎn)轉(zhuǎn)動任意角度(旋轉(zhuǎn)角在0°到90°之間),再連接CE,取CE的中點(diǎn)F(如圖3),問(1)中的結(jié)論是否仍然成立?證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知:△ABC為邊長是4
          3
          的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒(t≥0).

          (1)在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
          (2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作∠ABE的角平分線BM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
          (3)如圖3,若四邊形DEFG為邊長為4
          3
          的正方形,△ABC的移動速度為每秒
          3
          個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒2
          3
          個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012屆重慶市重慶一中九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

          如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒().

          【小題1】在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
          【小題2】如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作的角平分線EM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
          【小題3】如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得,若存在,請求出t的值;若不存在,請說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒().

          1.在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;

          2.如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作的角平分線EM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.

          3.如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得,若存在,請求出t的值;若不存在,請說明理由

           

          查看答案和解析>>

          同步練習(xí)冊答案